+ -
+1
Психофизиология цветового зрения | Модель Харвича и Джемсон
В историческом экскурсе в начале книги мы рассматривали причины отвержения одностадийной концепции и замены ее двухстадийной. И хотя первые идеи о втором звене цветового анализатора появились еще в начале нашего века, реально, в качестве сформировавшейся теории, двухстадийная концепция появляется только в 50-е годы. Первую математическую модель, основанную на широком круге экспериментальных измерений, предложили американские исследователи Харвич и Джемсон.
+ -
0
МАТЕМАТИЧЕСКАЯ ПСИХОФИЗИОЛОГИЯ ЦВЕТОВОГО ЗРЕНИЯ | Модель Стайлса
Последняя серьезная попытка реанимации одностадийной трехкомпонентной теории была сделана Стайлсом. Стайлс основывался на большом массиве измерений, проведенных методом двухцветного порога. По результатам этих измерений Стайлс вывел свои функции спектральной чувствительности рецепторов сетчатки. Это привело его к выводу, что вклад каждого приемника в цветоразличение не одинаков, он рассчитал пропорции вкладов приемников и изменил выражение (4.1.3) следующим образом:
+ -
0
МАТЕМАТИЧЕСКАЯ ПСИХОФИЗИОЛОГИЯ ЦВЕТОВОГО ЗРЕНИЯ | Модель Гельмгольца
Автором первой математической модели различения цветов был Герман фон Гельмгольц. Он разработал ее незадолго до смерти в 1894 г., основываясь на своей теории цветового зрения. На модель Гельмгольца уже много лет ссылаются только как на начальную точку в истории математических моделей цветоразличения.
Действительно, модель Гельмгольца очень быстро обнаружила свою несостоятельность в решении проблемы цветоразличения, но тем не менее она имеет не только исторический, но и теоретический интерес. Целый ряд идей, лежащих в основе модели Гельмгольца, без изменений входит во все последующие модели.
+ -
+2
Геометрическая модель смешения цветов
Результаты смешения спектральных цветов удобно описывать в геометрических терминах координатного пространства. Тогда например, можно сказать, что в пространстве смешения цветов спектральный ряд от 520 до 660 нм расположен на одной геодезической линии. Это пространство, очевидно, двумерно. Одним измерением служит цветовой тон, а другим — цветовая насыщенность. Такое пространство называется пространством хроматичности, или цветности.
+ -
0
Многомерное шкалирование. Построение пространственной модели стимулов
Как уже было сказано, построение психологического пространства предполагает решение двух самостоятельных задач: определения минимального числа осей, необходимых и достаточных для описания структуры межстимульных различий, и вычисления числовых значений, определяющих положение каждого стимула относительно базисных осей координат.
Определение базисной размерности. Определение достаточного числа измерений основано на выборе некоторого критерия, по которому оценивается расхождение между исходной матрицей данных и вычисленными межточечными расстояниями. В идеальном случае это расхождение должно равняться нулю, но в эмпирических данных всегда присутствуют случайные ошибки — шум, величина которого чаще всего неизвестна, поэтому на практике критерий выбирается не нулевой, но достаточно небольшой.
+ -
0
Модель шкалирования цветового зрения. Модель Терстона
Психофизическая идея Терстона заключалась в том, чтобы построить субъективную шкалу, основываясь только на структуре внутренних взаимоотношений между реакциями. Набор физических объектов может представлять собой просто шкалу наименований, поскольку стимульный параметр, соответствующий исследуемому субъективному признаку и по которому можно хотя бы упорядочить стимулы, априори неизвестен.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
0
Кодирование зрительной информации
Оптическая система каждого глаза создает на сетчатке картину, соответствующую проекции объектов внешнего мира на сферическую поверхность дна глаза. Различия в яркости объектов и их деталей передаются в виде различий в освещенности разных мест изображения. В другом глазе получается картина, похожая на первую, но не совпадающая с ней из-за того, что другой глаз находится на некотором расстоянии от первого. В паре изображений содержится информация о величине, форме и взаимном расположении предметов по всем трем координатам пространства. Эту информацию нужно передать в мозг и рационально обработать.