+ -
+7
Общая трехстадийная модель цветового зрения
Результаты экспериментального исследования взаимосвязи между нейрональной сетью ахроматического зрения, представленной на рис. 4.3.3, и нейрональной сетью хроматического зрения, представленной на рис. 4.3.5, было проведено в работе Измайлова.
С этой целью методом многомерного шкалирования была построена пространственная модель различения монохроматических и ахроматических цветов разной яркости. В результате анализа оказалось, что множество цветов разной яркости можно расположить только в четырехмерном евклидовом пространстве, если исходить из условия линейных соотношений между цветовыми различиями и межточечными расстояниями.
+ -
-2
Психофизиология цветового зрения | Трехстадийная модель ахроматического зрения
В работах Фомина и др., Соколова и Измайлова рассматривается трехстадийная модель ахроматического зрения, базирующаяся на принципе двухканального кодирования интенсивности в зрительной системе и разделении яркостной составляющей излучения от собственно ахроматической составляющей цвета.
Блок-схема' такой модели приведена на рис. 4.3.3. На первой стадии анализ интенсивности излучения осуществляется фотопическими рецепторами сетчатки. Принципы этой работы рецепторов изложены во многих руководствах по психофизике и физиологии зрения (см., например, Вышецки и Стайлс). Суммарный сигнал от трех типов рецепторов сетчатки (log L) передается в нейрональную сеть, которая содержит два реципрокно функционирующих канала — световой (В) и темновой (D). Эта двухканальная сеть представляет вторую стадию анализа интенсивности излучения.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
0
Психофизиология цветового зрения | Модель Гуса
В последние несколько лет внимание исследователей привлекает модель, разрабатываемая Гусом и его сотрудниками. Она основывается на концепции Мюллера, которую иногда называют трехстадийной, поскольку оппонентные каналы в этой концепции подвергаются двухкратному преобразованию.
+ -
+1
Психофизиология цветового зрения | Достижения и недостатки одно- и двухстадийных теорий
Главным достижением XIX в. в исследовании цветового зрения явилась математическая модель смешения цветов, основанная на трехкомпонентной теории Юнга—Гельмгольца. Ее теоретическое значение состояло в установлении прямой связи между феноменами цветового смешения и тремя светочувствительными приемниками сетчатки, а практическое — в разработке системы спецификации цвета по спектральному составу излучения (Стандартный Наблюдатель МКО-31).
+ -
0
Психофизиология цветового зрения | Модель Воса и Уолравена
Из математических моделей, разрабатываемых в рамках двух стадийной концепции, наиболее развитой в настоящее время является шаровая модель Воса и Уолравена. Вое и Уолравен приняли на вооружение все основные идеи Гельмгольца, за исключением характеристики дифференциальной чувствительности рецепторных приемников.
+ -
+1
Психофизиология цветового зрения | Модель Харвича и Джемсон
В историческом экскурсе в начале книги мы рассматривали причины отвержения одностадийной концепции и замены ее двухстадийной. И хотя первые идеи о втором звене цветового анализатора появились еще в начале нашего века, реально, в качестве сформировавшейся теории, двухстадийная концепция появляется только в 50-е годы. Первую математическую модель, основанную на широком круге экспериментальных измерений, предложили американские исследователи Харвич и Джемсон.
+ -
0
МАТЕМАТИЧЕСКАЯ ПСИХОФИЗИОЛОГИЯ ЦВЕТОВОГО ЗРЕНИЯ | Модель Стайлса
Последняя серьезная попытка реанимации одностадийной трехкомпонентной теории была сделана Стайлсом. Стайлс основывался на большом массиве измерений, проведенных методом двухцветного порога. По результатам этих измерений Стайлс вывел свои функции спектральной чувствительности рецепторов сетчатки. Это привело его к выводу, что вклад каждого приемника в цветоразличение не одинаков, он рассчитал пропорции вкладов приемников и изменил выражение (4.1.3) следующим образом:
+ -
+2
Особенности процессов кодирования цвета в престриарной зоне V4
В престриарной коре обезьяны выделяют зону V4, специфическим образом связанную с кодированием цвета (рис. 3.4.1). V4 получает основные афферентные входы от полей 18 и 19 и частично от поля 17. Из V4 сигналы поступают в нижневисочную кору. В V4 представлена только центральная часть поля зрения (20-30°). РП нейронов этой зоны имеют небольшой по размерам (15-20°), наличие которой можно выявить только по ее тормозному влиянию на реакцию центра.
За счет больших размеров периферии рецептивные поля нейронов V4 в среднем в 30 раз превышают по площади РП нейронов стриарной коры. Тормозное воздействие периферии РП максимально, если свойства проецируемого на нее стимула совпадают (или близки) со свойствами стимула, возбуждающего центр (размеры, спектральный состав и др.). В зоне V 4 отсутствует ретинотопическая проекция.
+ -
0
Психофизиология цветового зрения | Цветовые колонки
Нейроны коры со сходными свойствами группируются в вертикальные столбцы (колонки), идущие радиально от поверхности коры к белому веществу. При микроэлектродном исследовании это проявляется в том, что по мере погружения электрода в глубину коры (перпендикулярно к ее поверхности) по ходу встречаются нейроны с близкими свойствами.
Морфологически колонки выявляются, в частности, по преобладанию вертикальных связей между нейронами внутри колонки над горизонтальными связями между соседними колонками. Деление коры мозга на вертикальные элементарные единицы, объединяющие нейроны из разных слоев, обнаружил методами гистологии Лоренте де Но (1943).
+ -
0
Организация каналов из тонических неоппонентных клеток
Большое значение для понимания функциональной организации нейронной сети, анализирующей световое излучение, имеет классификация корковых нейронов, предложенная Юнгом и Баумгартнером. Они выделили пять типов нейронов в зрительной коре кошки, из которых один тип (А) не связан прямо с клетками НКТ и сетчатки, а, вероятно, представляет собой стабилизирующую систему, поддерживающую фоновый уровень возбуждения коры. Эти клетки отвечают при электрическом раздражении клеток таламуса или вестибулярного аппарата и не реагируют на раздражение рецепторных клеток диффузным светом.
+ -
+1
Цветовые рецептивные поля корковых клеток
В первичной и вторичных проекционных зонах зрительной коры обезьяны выделены 4 типа нейронов, общим свойством которых является реакция только на узкополосные спектральные стимулы, а не на широкополосные сигналы любой формы. Цветовые нейроны с концентрическими рецептивными полями обнаруживают двойную цветовую оппонентность: например, реагируют по типу R+G- в центре рецептивного поля и по типу R-G+
на периферии (или, наоборот R-G+ в центре, а R+G- — на периферии) (рис. 3.4.2). Выделяются два типа оппонентных клеток — R/G и B/Y, но преобладают клетки R/G-типа. Максимальная активация таких клеток, как и аналогичных нейронов с двойл ной цветовой оппонентностью в сетчатке и НКТ, достигается при одновременном засвете центра и периферии рецептивного поля разными излучениями. Нейроны этого типа получают прямые входы от НКТ и представляют первый этап обработки информации о цвете в коре. Клетки с концентрическими цветооппонептными рецептивными полями локализуются преимущественно в IV слое.
+ -
0
Неевклидовость цветового пространства
Рассмотренные в предыдущих разделах данные различения апертурных цветов обнаружили существенную неевклидовость цветового пространства. Во-первых, данные локального цветоразличения, полученные Мак Адамом, Брауном и Мак Адамом, Райтом и другими авторами в аналогичных работах, показывают, что области дифференциальной чувствительности в пространстве равноярких цветов не могут быть представлены евклидовой квадратичной формой, а только в виде поверхности, имеющей ненулевую гауссову кривизну.