Сетчатка │ Часть 4

+ -
0
Сетчатка │ Часть 4

Описание

Межклеточное пространство сетчатки



Между клетками сетчатки существует пространство, ширина которого равна примерно 10—20 нм. Наиболее широкое это межклеточное пространство между фоторецепторами. Выполнено оно электронноплотным мелкозернистым материалом (интерфоторецепторный матрикс), препятствующим диффузии в сетчатку частиц большого размера.

Межфоторецепторный матрикс состоит из глюкозаминогликанов, гликопротеидов и филаментозного материала. Лишен он коллагена, ламинина и фибронектина. Матрикс, окружающий палочки, отличается своим химическим составом от матрикса, окружающего колбочки. Более подробная информация о функции матрикса приведена выше.

Топографические особенности строения сетчатки



На основании существования значительных различий строения и функции сетчатки в зависимости от расположения выделяют центральную и периферическую зоны сетчатки.

Центральная сетчатка (рис. 3.6.46, 3.6.47; 3.6.48, 3.6.49).



Рис. 3.6.46. Офтальмоскопические особенности глазного дна: слева видна область желтого пятна. В центре располагается диск зрительного нерва, от которого отходят ветви центральной артерии сетчатки




Рис. 3.6.47. Офтальмоскопический вид глазного дна (вверху) и соответствие его структур особенностям микроскопического строения сетчатой оболочки (внизу) (по Hogan et ai, 1971): 1— ямочка; 2 — центральная ямка; 3— парафовеолярная область; 4 — перифовеолярная область




Рис. 3.6.48. Структурные особенности центральной ямки сетчатой оболочки и сосудистой оболочки этой области: в этой области сетчатки наиболее развит слой фоторецепторных клеток. Слой нервных волокон, внутренний ядерный слой, внутренний плексиформный слой и наружный ядреный слой отсутствуют (1—сетчатая оболочка; 2 — пигментный эпителий; 3— слой хориокапилляров сосудистой оболочки; 4 — слой сосудов среднего калибра сосудистой оболочки; 5 — слой сосудов большого калибра сосудистой оболочки)




Рис. 3.6.49. Схема строения области центральной ямки сетчатой оболочки: 1- внутренняя пограничная мембрана; 2—слой ганглиозных клеток; 3— внутренний ядерный слой; 4 — наружный ядерный слой; 5 — пигментный эпителий сетчатой оболочки


Наиболее важным участком центральной сетчатки является желтое пятно (macula lutea). Желтое пятно темнее окружающей сетчатки, поскольку более интенсивно пигментирован подлежащий пигментный эпителий. В центре желтого пятна определяется еще более темное пятно, называемое центральной ямкой (fovea centralis), а по середине его — светлая точка, ямочка (fоveola). Между центральной ямкой и ямочкой лежит так называемая бессосудистая зона.

Диаметр желтого пятна равняется примерно 5,5 мм. При микроскопическом исследовании этот участок сетчатки идентифицируется на основании трех основных критериев:

  1. Слой ганглиозных клеток содержит более одного слоя клеток.

  2. Волокна наружного плексиформного слоя ориентированы косо (волокна Хенле).

  3. Отмечается большая концентрация кол бочек.


Понятие «желтое пятно» возникло при макроскопическом исследовании трупных глаз. На плоскостных препаратах сетчатки видно небольшое пятно желтого цвета. Длительное время химический состав пигмента, придающего желтый цвет этой области сетчатки, был неизвестен. Лишь использование хроматографии позволило выделить пигменты в «чистом» виде и идентифицитровать два их вида. Это зиксантин и лютеин. В 90% исследованных глаз преобладал зиксантин, а в 10%—лютеин. Изменение указанного соотношения пигментов не происходит с возрастом. Соотношение этих пигментов изменяется в зависимости от расстояния исследуемого участка сетчатки от центра желтого пятна. Показано, что изменение соотношения пигментов четко коррелирует с изменением количественного соотношения палочек и колбочек. Концентрация лютеина выше в местах большей концентрации палочек, а зиксантина — колбочек. В перифовеолярной области обнаруживается еще один пигмент желтого цвета — липофусцин.

Предполагают, что отсутствие свечения макулярной области при проведении флюоресцентной ангиографии скорее связано с наличием пигментов, чем с особенностями строения сосудов сетчатки или кровообращения этой области.

Центральная ямка представляет собой небольшое утлубление внутренней поверхности сетчатки. Ее центр расположен в 4,0 мм темпоральней и 0.8 мм ниже диска зрительного нерва. Располагается эта область непосредственно на зрительной оси глаза.

При клиническом исследовании границу центральной ямки точно определить не представляется возможным. Только у молодых людей эта область хорошо видна в виде светлого рефлекса эллипсоидной формы, исходящего из утолщенной внутренней пограничной мембраны сетчатки, которая направляется в сторону ямочки.

Диаметр центральной ямки равен 1,5—1,8 мм (составляет 5° поля зрения), приближаясь к размеру диска зрительного нерва. Основание ямки имеет диаметр 0,4 мм. Глубина центральной ямки отличается у разных людей, но в среднем равняется 0,25 мм. В самом центре центральной ямки сетчатка истончается до 0,13 мм (рис. 3.6.47).

В центральной ямке преобладают колбочки, что свидетельствует о том, что эта область обеспечивает наибольшую остроту зрения. Именно здесь концентрируется до 10% колбочек всей сетчатки. Плотность колбочек существенно увеличивается по мере продвижения к центру, причем в большей степени с назальной стороны, чем темпоральной. Диаметр области, содержащей только колбочки, равняется 0,57 мм, и в этом участке располагается порядка 35 000 колбочек. По всей площади центральной ямки, равной 1,75 мм2, число колбочек равняется 100 000. В ямочке 2500 колбочек.

Колбочки в области центральной ямки по форме напоминают палочки, но их ультраструктурная организация идентична колбочкам других участков сетчатки. Наружные сегменты этих колбочек ориентированы строго вдоль зрительной оси и перпендикулярно плоскости пигментного эпителия сетчатки. В то же время наружные сегменты фоторецепторных клеток других участков сетчатки ориентированы в направлении зрачка.

На расстоянии 0,25 мм от центральной ямки начинает быстро нарастать количество палочек, максимальное число которых занимает область, равную 18° с темпоральной стороны, и 23° — с назальной.

Ямочка (foveola) представляет собой центрально расположенное углубление в центральной ямке. Поперечник этой области равен приблизительно 0,35 мм, а толщина основания — 0,10 мм. Граница ямочки четко не определяется, и она незаметно переходит в центральную ямку. В этой области обнаруживаются только наружные сегменты колбочек, воспринимающих «красный» и «зеленый» цвета, а также глиальные и мюллеровские клетки. Изредка при световой микроскопии можно увидеть ядра ганглиозных клеток сразу же под внутренней пограничной мембраной. Центральные участки ямки обеспечиваются питанием только за счет диффузии питательных веществ из хориокапиллярного слоя сосудистой оболочки.
[banner_centerrs] {banner_centerrs} [/banner_centerrs]

Фовеолярная бессосудистая зона характеризуется полным отсутствием сосудов. Эта зона располагается между центральной ямкой и ямочкой и хорошо видна при флюоресцентной ангиографии. Диаметр бессосудистой зоны варьирует от 250 до 600 мкм. Эта область имеет большое практическое значение. Она является ориентиром при проведении лазеркоагуляции неоваскулярных субрстинальных мембран.

Периферия сетчатки (рис. 3.6.50).



Рис. 3.6.50. Микроскопическое строение сетчатой оболочки в области зубчатой линии: видно место перехода сенсорной части сетчатки в пигментный эпителий ресничного тела. В месте перехода в сетчатке определяется кистовидная полость. Стрелками указана мембрана Бруха


Зубчатая линия (край), передний и задний субретинальный «тупик». Строение периферии сетчатой оболочки существенно отличается от центральных участков. Особенно это четко определяется в месте перехода сенсорной части сетчатки в плоскую часть ресничного тела. Этот переход имеет вид зубчатой линии, наиболее четко выраженной с назальной стороны. Он имеет ширину 2,1 мм с темпоральной стороны и 0,7—0,8 мм — с назальной стороны. Располагается зубчатая линия от лимба в 6,0 мм с назальной стороны и в 7,0 мм с височной. Расстояние от экватора до нее равно 6—8 мм, а от зрительного нерва с назальной стороны — 25 мм.

В области зубчатой линии периферические отделы сенсорной части сетчатки внезапно истончаются и переходят в непигментированный слой пигментного эпителия ресничного тела. При этом полностью исчезает слой нервных волокон и ганглиозных клеток, существенно истончается наружный плексиформный слой. Наружный ядерный слой истончается всего до двух слоев клеток. При этом нейроглия и мюллеровские клетки замещают исчезнувшие нейроны.

Внутренняя пограничная мембрана в области зубчатой линии утолщается, образуй полосу шириной 4,0 мм. Происходит это в результате плотного контакта мембраны с коллагеновыми волокнами основания стекловидного тела. Вблизи зубчатой линии видны лишь единичные палочки и абортивные формы колбочек. Именно в этой области у здоровых людей нередко выявляются кисты сетчатой оболочки, окруженные скоплением глиальных клеток (кистозная дегенерация). Кисты выполнены гликозаминогликанами и иногда «открываются» в стекловидное тело. Кистозная дегенерация периферии сетчатки более выражена с темпоральной стороны, и вероятность ее развития увеличивается с возрастом.

В области зубчатой линии наружная пограничная мембрана вместе с мембраной пигментного эпителия формирует плотную спайку, продолжающуюся кпереди между двумя слоями ресничного эпителия. Это сращение образует большой циркулярно расположенный «тупик» переднего субретинального пространства.

Задний субретинальный «тупик» локализуется вокруг диска зрительного нерва. В этом месте исчезают внутренние и наружные сегменты фоторецепторов. Наружная пограничная мембрана продолжается между глиальными клетками Мюллера и соединительным поясом, лежащим вблизи верхушек пигментных эпителиальных клеток, образуя при этом сращение.

Субретинальное пространство. Между сенсорной частью сетчатки и пигментным эпителием располагается потенциальное (возникающее в определенных условиях) пространство, так называемое субретинальное пространство. Субретинальное пространство оканчивается в двух тупиках, описанных выше.

Сосудистая система сетчатки



Сетчатка выделяется исключительно высокой интенсивностью поглощения кислорода на единицу массы среди тканей. Отличается кровоснабжение сетчатки и тем, что при этом задействованы две системы кровообращения. Первая система состоит из собственных сосудов сетчатки, а вторая система — это сосуды хориоидеи (рис. 3.6.51).



Рис. 3.6.51. Флюоресцентная ангиография сосудов сетчатой оболочки: четко виден характер распределения артерий и вен различного калибра


В последнем случае обеспечение кислородом и метаболитами сетчатки происходит путем их диффузии через мембрану Бруха и клетки пигментного эпителия. Необходимо подчеркнуть то, что путем диффузии из увеального тракта происходит обеспечение только наружной трети сетчатки. Подобный тип кровоснабжения у становился еще в эмбриональном периоде развития глаза и обусловлен особенностями функционирования фоторецепторов.

Собственные сосуды сетчатки являются ветвями центральной артерии сетчатки. Центральная артерия сетчатки лежит с назальной стороны относительно центральной вены сетчатки. При вхождении в сетчатую оболочку артерия и вена подразделяются на четыре главные ветви: верхнюю и нижнюю назальные и верхнюю и нижнюю темпоральные. Затем артерии дихотомически делятся, отходя от основного ствола под прямым утлом, и постепенно превращаются в артериолы, а затем и в капилляры (рис. 3.6.52; 3.6.53, 3.6.54).



Рис. 3.6.52. Сосудистая система сетчатой оболочки между диском зрительного нерва и областью желтого пятна: отмечается древовидное ветвление артерий до образования капиллярной сети вокруг центральной ямки. Сетчатка обработана протеолитическими ферментами




Рис. 3.6.53. Обработанный трипсином плоскостной препарат сетчатой оболочки: в центре виден интенсивно окрашенный диск зрительного нерва и отходящие от него артериальные (более темные и тонкие) и входящие (более светлые) венозные сосуды. Вокруг артерий и вен определяется узкая свободная от капилляров зона. Густая артериальная сеть видна вокруг желтого пятна




Рис. 3.6.54. Обработанная трипсином сетчатая оболочка. Взаимоотношение артериальных и венозных сосудов различного калибра (по Hogan et al., 1971): а — артерия сетчатки ( 1) с наружным циркулярно расположенным слоем мышечных волокон. Из артерии выходит артериола (2), переходящая в капилляры (3); б — капиллярное ложе периферии сетчатой оболочки


Примерно у 25% людей сосуды сетчатки исходят непосредственно из сосудистой системы хориоидеи. Соединение двух систем происходит с темпоральной стороны диска зрительного нерва (цилиоретинальная артерия). Эта артерия обеспечивает кровоснабжение большей части желтого пятна и папилло-макулярного пучка.

Закрытие просвета центральной артерии сетчатки в результате различных патологических процессов (атеросклеротические изменения, гигантоклеточный артериит) у людей, имеющих хориоретинальную артерию, приводит к незначительному снижению зрения. Наоборот, эмболия цилиоретинального сосуда существенно нарушает центральное зрение, сохраняя периферическое.

Сосуды сетчатки заканчиваются нежными сосудистыми дугами на расстоянии 1 мм от зубчатой линии. Артериальная система сетчатки относится к истинным терминальным системам, поскольку не существует анастомозов между артериями сетчатки, а также между артериями сетчатки и другими системами кровообращения. Нет также и артериовенозных анастомозов. Каждая ветвь центральной артерии сетчатки кровоснабжает определенный квадрант. В результате этого при прекращении кровообращения в одной из артериальных ветвей развивается инфаркт только соответствующего квадранта сетчатки.

Диаметр артерий вблизи диска зрительного нерва равен 0,1 мкм, а толщина стенки — 18 мкм. Все крупные ветви центральной артерии сетчатки относятся к артериям малого калибра. Вблизи диска зрительного нерва их стенка содержит 5—7 слоев гладкомышечных клеток, а на периферии — 2—3. Эндотелиальная выстилка имеет обычное строение и обладает базальной мембраной. В артериях сетчатки не выявляется внутренней эластической мембраны. Адвентиция состоит из различного количества циркулярно расположенных коллагеновых волокон. Между адвентицией и окружающими аксонами ганглиозных клеток располагаются базальные мембраны глиальных клеток и клеток Мюллера.

Артериолы меньшего размера, чем артерии. Диаметр их порядка 8—15 мкм. Эти сосуды распределяются вблизи внутренней пограничной мембраны или недалеко от нее, в основном отражая картину расположения нервных волокон. В местах приближения сосудов к поверхности внутренняя пограничная мембрана истончается. Истончение внутренней пограничной мембраны сетчатки определяется также вдоль патологически измененных сосудов крупного калибра.

Артериолы лежат в основном над соответствующими венулами. Поскольку стенки обоих типов сосудов в норме просвечиваются, клинически видны столбики светлой крови (окисленной в артериях) над столбиками темной крови, протекающей в венулах. С возрастом и при некоторых заболеваниях, ускоряющих процессы старения (диабет, гипертония, артериосклероз), стенки артериол утолщаются и при этом исчезают столбики венозной крови.

Как и в артериях, стенка артериол содержит гладкомышечные клетки. При этом базальная мембрана эндотелиальных клеток срастается с базальной мембраной мышечных клеток. Между гладкими мышцами и окружающей глией лежит узкая полоска коллагеновой ткани.

Капилляры. Капилляры распространяются на протяжении всей сетчатки в виде густой сети, подвешенной между артериолами и венулами. Относительно широкая свободная от капилляров зона видна вдоль артериол и венул, а также в области центральной ямки диаметром 0,5 мм.

Капилляры распространяются в ткани сетчатки только от слоя ганглиозных клеток до внутреннего ядерного слоя. Их нет в наружном плексиформном и наружном ядерном слоях. Использование тотальных препаратов сетчатки выявило двуслойность распределения капилляров, особенно по периферии сетчатки. При этом поверхностная капиллярная сеть утолщается параллельно утолщению слоя нервных волокон. Именно в связи с этим наиболее толстый капиллярный слой обнаруживается перипапиллярно.

Капилляры сетчатки имеют особую структурную организацию.

В первую очередь необходимо указать на наличие большого количества перицитов (рис. 3.6.56).



Рис. 3.6.56. Электроннограмма стенки капиллярного сосуда сетчатой оболочки: снаружи эндотелиальной выстилки сосуда (1) располагается перицит (2), окруженный базальной мембраной


Соотношение перицитов и эндотелиальных клеток равно 1:1. Перициты прилегают к базальной мембране эндотелиоцитов. Окружены они собственной базальной мембраной, срастающейся с базальной мембраной эндотелиоцитов. В результате этого перицит как бы заключен в футляр. Потеря связи перицитов с эндотелиальными клетками капилляров сетчатки — один из первых патогенетически существенных признаков развивающегося сахарного диабета. Базальная мембрана перицитов также прикрепляется к клеткам Мюллера, а при наличии сосудов большого калибра и к соединительнотканной строме сосуда.

При ишемических ретинопатиях, типа сахарного диабета, полицитемии, макроглобулинэмии, перициты некротизируются. Это приводит к ослаблению стенки сосуда и образованию микроаневризм.

Отличительной особенностью эндотелиоцитов является и то, что они соединяются между собой при помощи сложной системы межклеточных контактов. С апикальной стороны они скрепляются «запирающими пластинками», а между телами клеток видны многочисленные «пальцевые вдавления».

В просвет сосуда клетки отдают многочисленные микроворсинки, а их цитоплазма выполнена пузырьками, что указывает на интенсивный пиноцитоз. Наиболее важным отличием эндотелиальной выстилки капилляров сетчатки является отсутствие «фенестр». Именно эта особенность строения объясняет отсутствие распространения высокомолекулярных веществ из кровяного русла в сетчатку по межклеточным пространствам. Наличие плотных контактов между клетками и отсутствие «фенестр» обеспечивает функционирование гемато-ретинального барьера.

Система регуляции кровенаполнения сосудов сетчатки отличается от регуляции кровоснабжения других органов и тканей. Кровообращение сетчатки ауторегулируется. В этой связи уместно напомнить, что сетчатка, в отличие от сосудистой оболочки, не содержит симпатических нервных волокон. Вегетативные волокна распространяются по ходу глазничной артерии только до решетчатой пластинки. Поддержание постоянного внутрисосудистого давления осуществляется только местными механизмами. Тем не менее некоторыми авторами показано наличие адренэргических окончаний на артериях сетчатки. Подтверждают возможность вегетативной иннервации и изменения кровотока в сетчатке при использовании адренэргических антагонистов. Эффекторным органом ауторегуляции кровообращения в сетчатке являются гладкие мышцы артерий и артериол. Тонус сосудов и контролирует давление, скорость кровотока и, естественно, уровень насыщения тканей кислородом. Запускается механизм авторегуляции даже при небольшом падении насыщения тканей кислородом и повышении pH. При повышении pH происходит первоначальное расширение просвета сосуда, а затем быстрое сужение, приводящее к ускорению кровотока.

Вены. Просвет вен сетчатки выстлан эндотелиальными клетками. Под эндотелием располагается соединительнотканный слой, содержащий эластические волокна и гладкомышечные клетки. Снаружи вены окружены адвентициальным соединительнотканным слоем. Все вены от нейральной ткани отделены тонким слоем глиальных клеток, отдающих многочисленные цитоплазматические отростки, вплетающиеся в адвентицию сосудов (рис. 3.6.57).



Рис. 3.6.57. Ветвь центральной вены сетчатой оболочки (по Hogan et al., 1971): в просвете сосуда определяются эритроциты (справа). К эндотелиальным клеткам (1) прилежит мышечный слой (2). Между эндотелиальными и мышечными клетками лежит базальная мембрана (стрелки). Снаружи мышечного слоя располагается адвентиция (3), к которой прилежат отростки мюллеровских клеток (4)


В пределах зрительного нерва вены окружены не глиальными элементами, а соединительной тканью оболочек нерва. Диаметр вен в различных участках различен. Так, в области диска зрительного нерва он равняется 150 мкм, а в области экватора только 20 мкм.

Уменьшение диаметра сосудов сопровождается исчезновением гладкомышечных клеток, которые заменяются перицитами. Благодаря наличию большого количества перицитов венозная стенка обладает довольно высокой эластичностью. В связи с этим просвет вены может существенно изменяться в зависимости от изменения реологических свойств протекающей крови. У больных сахарным диабетом или заболеваниями наружной сонной артерии, сопровождающимися уменьшением скорости движения крови, вены существенно колбасовидно расширяются. Аналогичные изменения отмечаются и в венах сетчатки при отеке диска зрительного нерва или развитии в глазнице объемных процессов, сопровождающихся увеличением венозного давления.

Центральная вена сетчатки является основной веной, обеспечивающей отток крови от сетчатой оболочки.

В области диска зрительного нерва существуют анастомозы между венозными системами сетчатки и сосудистой оболочки. Это так называемые цилиоретинальные вены, т. е. вены, соединяющие вены сосудистой оболочки и сетчатки. Обнаруживаются они довольно редко. Jackson выявил только в двух случаях эти вены при исследовании 1000 глаз.

На протяжении многих лет исследователи обсуждают вопрос и о наличии анастомозов между венами сетчатки и мягкой мозговой оболочки зрительного нерва — ретинопиальных вен. Эти вены отводят кровь от сетчатки непосредственно в венозную систему зрительного нерва без предварительного соединения с центральной веной сетчатки. Ряд исследователей предполагают, что подобные анастомозы развиваются только в результате развития объемного процесса в глазнице, например менингиомы. Ruskell на основании собственных исследований предполагает существование подобных вен как вариант строения венозной системы сетчатки. По его мнению, возможность такой связи определяется особенностями развития кровеносной системы этой области в эмбриогенезе. На ранних этапах эмбриогенеза существует две независимые системы венозного кровообращения, которые связаны с будущей центральной веной сетчатки. На поздних этапах эмбриогенеза одна из систем обычно подвергается обратному развитию. В случаях обнаружения ретинопиальных сосудов подобного обратного развития одной из систем эмбриональной венозной системы не происходит.

В настоящее время показано, что наличие вышеприведенных анастомозов (ретинопиальные вены, цилиоретинальные вены) в определенной степени предотвращает развитие тяжелых функциональных нарушений при окклюзии центральной вены сетчатки.

Довольно высокая вероятность развития нарушения оттока венозной крови по центральной вене сетчатки связана с рядом причин. Одной из таких причин рассматривают близкое прилегание центральной вены сетчатки к центральной артерии в области диска зрительного нерва. Чаще окклюзия развивается при перекрещивании артерии и вены. В местах перекрещивания сосудов адвентиция артерии сливается с глиальной оболочкой вены, а иногда их разделяет лишь слой эндотелиальных клеток и базальная мембрана. Поскольку стенка артерии подвержена атеросклеротическим изменениям, просвет вены в таких случаях довольно легко облитерируется. Клиническими исследованиями выявлено, что перекрещивание артерии и вены чаще обнаруживается в верхневисочном секторе. Именно по этой причине в 99% окклюзия вены происходит именно в этой зоне.

По мере уменьшения калибра вен они превращаются в венулы. Стенка венулы существенно отличается от стенки вены. В венулах стенка столь истончена, что ядра эндотелиальных клеток выстоят в просвет сосудов. Прерывается венозная система в 1,5 мм позади зубчатой линии.

Гемато-ретинальный барьер



Описывая кровеносную систему сетчатки, нельзя обойти вниманием такое важное в функциональном отношении понятие, как гемато-ретинальный барьер. Довольно давно было показано, что в центральную нервную систему из плазмы крови поступают далеко не все вещества, поскольку существует барьер (гематоэнцефалический). Этот барьер обеспечивает, одновременно с механизмами активного и пассивного транспорта, поддержание гомеостаза в нервной системе, обеспечивая тем самым оптимальную среду для функционирования нейронов. Подобная ситуация складывается и в отношении глазного яблока, т. е. существует гемато-офтальмический барьер.

Понятие гемато-офтальмического барьера включает в себя особую структурно-функциональную организацию тканевых и клеточных образований органа зрения, обеспечивающих и поддерживающих состояние гомеостаза структур глаза и определяющих, в значительной мере, особенности типов патологических реакций (аномалии развития, воспалительная реакция, дистрофия, явления регенерации, опухолевый процесс, дисциркуляторные расстройства и др.).

В глазном яблоке существуют две основные барьерные системы:

  • 1-й барьер: кровь — внутриглазная жидкость. Состоит этот барьер из различных структур ресничного тела (базальная мембрана пигментного эпителия и межклеточные контакты клеток пигментного эпителия). Эта система регулирует и определяет характер взаимоотношений между кровью и внутриглазной жидкостью. При этом основное движение метаболитов направлено из крови в глаз.

  • 2-й барьер: кровь — сетчатка (гемато-ретинальный барьер). Этот барьер отличается особой «жесткостью» в отношении многочисленных веществ. Именно этот барьер обеспечивает гомеостаз сенсорной части сетчатой оболочки.


Помимо приведенных выше двух систем, существуют также системы, обеспечивающие гомеостаз стекловидного тела, внутрисклеральной части зрительного нерва и папиллярной области, роговой оболочки (расположенный на уровне перилимбального сосудистого сплетения). Не исключается возможность наличия барьерных образований на уровне хориокапиллярного слоя увеального тракта глаза, сосудов радужки. Перечисленные барьеры не имеют столь четкой морфологической основы, как гемато-ретинальный барьер.

Вполне обоснована возможность выделения ликворотканевых барьеров. К ним относятся:
  • ликворотканевой барьер роговой оболочки (десцеметова оболочка — задний эпителий роговицы),

  • ликворотканевой барьер хрусталика (капсула хрусталика и его эпителий),

  • ликворотканевой барьер стекловидного тела (внутриглазная жидкость — стекловидное тело).
Дренажная система также обладает барьерными функциями.

О некоторых из перечисленных барьеров мы упоминали выше, при освещении строения и функции той или иной структуры. В настоящем разделе мы более подробно остановимся только на гемато-ретинальном барьере.

Основным структурным элементом барьера кровь — сетчатка являются кровеносные сосуды сетчатки. В 1966 г. Shakib и Cuncha-Vaz показали, что соединения между эндотелиальными клетками кровеносных сосудов сетчатки отличаются наличием «запирающих пластинок» (zomila occludens), которые как бы «запечатывают» межклеточное пространство. Этот тип межклеточных контактов обеспечивает отсутствие так называемых «фенестр», свойственных сосудам увеального тракта (рис. 3.6.58).



Рис. 3.6.58. Структурные различия между капиллярными сосудами сосудистой (слева) и сетчатой (справа) оболочек глаза: в хориокапиллярах определяются «фенестры» (стрелки). Отсутствие «фенестр» в капиллярах сетчатой оболочки обеспечивает функционирование гемато-ретинального барьера


Экспериментальные исследования показали, что после производства парацентеза или при введении в организм животного гистамина юнкциональный комплекс сосудов сетчатки оказывался закрытым. При этом прохождение частиц трейсера блокировалось эндотелиальными клетками. Напротив, в сосудах радужной оболочки аналогичные воздействия на глазное яблоко вызывали открытие межклеточных пространств, и частицы трейсера поникали в межклеточные пространства и далее в строму радужки. Подобные исследования были проведены с использованием в качестве трейсеров таких веществ, как диоксид тория, трипановый голубой, флюоресцеин. На основании проведенных исследований Cuncha-Vaz пришел к выводу, что барьер кровь — сетчатка обеспечивается особым типом межклеточных контактов эндотелиальных клеток.

Последующие исследования с применением других трейсеров типа пероксидазы хрена, декстранов подтвердили предположение Cuncha-Vaz. Плотные контакты оказались наиболее прочными. Именно они были способны блокировать движение макромолекул между эндотелиальными клетками из просвета в интерстициальные ткани и наоборот.

Плотные соединения распределяются закономерным образом вдоль цитоплазматической мембраны эндотелиоцита. Необходимо отметить, что эндотелиоциты сосудов сетчатой оболочки, в связи с особенностями выполняемой ими функции, отличаются не только структурно, но и гистохимически. В них определяется исключительно высокая активность щелочной фосфатазы, практически не обнаруживаемой в эндотелиоцитах сосудов других тканей.

Гомеостаз наружной части сетчатки обеспечивает и другая барьерная система. Это комплекс структур, к которым можно отнести хориокапилляры сосудистой оболочки, мембрану Бруха и пигментный эпителий сетчатки.

Если стенка хорикапилляров не является препятствием для проникновения макромолекул, то мембрана Бруха большие молекулы не пропускает. Не проникают через нее пероксидаза хрена и ферритин. Усиливают барьерные свойства мембраны Бруха клетки пигментного эпителия. Показано, что если такие трейсеры, как трипановый синий и флюоресцеин, проникают через мембрану Бруха, то через клетки пигментного эпителия они уже проникнуть не могут.

Столь низкая пропускная способность пигментного эпителия обеспечивается характером контактов между эпителиоцитами. Ультраструктурно выявлено, что между клетками пигментного эпителия существуют межклеточные контакты, напоминающие контакты между эндотелиоцитами сосудов сетчатки (плотные контакты, запирающие пластинки).

Таким образом, основными структурами, обеспечивающими функцию барьера кровь — сетчатка для внутренней 2/3 толщины сетчатки, являются эндотелиальные клетки. Для наружной Уз толщины сетчатки такими образованиями являются хориокапилляры сосудистой оболочки, мембрана Бруха и пигментный эпителий сетчатки.

Гемато-ретинальный барьер привлек еще большее внимание после создания прибора, позволяющего прижизненно и количественно определить степень нарушения барьерных функций у животных и человека, а именно флюоротрона. Этот прибор позволил в довольно короткие сроки выяснить, что гемато-ретинальный барьер нарушается при многих заболеваниях глаза. Так, при травме глаза (контузионная, проникающая, химическая травмы, воздействие лазерным излучением и пр.) гемато-ретинальный и гемато-ликворный барьеры нарушаются уже на первых этапах посттравматического процесса, что является важным патогенетическим элементом в развитии воспалительных изменений и формирования внутриглазных шварт.

Считают также, что нарушение гемато-ретинального барьера является важным патогенетическим моментом в развитии макулярного отека, патологии глаза при сахарном диабете, глаукоме, окклюзии центральной вены сетчатки, увейте, пигментном ретините и др.

Центральная роль нарушения гемато-ретинального барьера в развитии заболеваний различной этиологии определяется тем, что при нарушении барьера глазное яблоко уже не является забарьерным органом. В этом случае, в него поступают токсические метаболиты, биологически активные вещества, иммуноглобулины и т. п. И, наоборот, из глазного яблока в кровяное русло попадают антигены структур глазного яблока, приводящие к аутосенсибилизации организма (белки хрусталика, сетчатой оболочки и др.). Именно изменение характера взаимоотношения между глазом и целостным организмом при нарушении барьеров предопределяет возможность возникновения и дальнейшего развития различных патологических процессов.

Столь важное значение барьеров в функционировании глаза поставило перед исследователями задачу разработки методов влияния на их функции в норме и патологии. Выявлены препараты, нарушающие и стабилизирующие барьерные функции, часть которых возможно применять в клинике.

Регенерация сетчатки



Останавливаясь на вопросах регенерации сетчатой оболочки, необходимо еще раз напомнить о том, что репаративной регенерации сетчатки не происходит. Как и в центральной нервной системе, отмечается лишь заместительная регенерация.

В отличие от регенерации других структур глаза (роговица, склера, радужная оболочка и др.) основную роль в заместительной регенерации сетчатки играют глиальные элементы (астроциты, олигодендроциты, микроглия). Именно их размножение, последующая дифференциация и синтез волокнистого компонента приводят к формированию глиального рубца сетчатки. В нейронах отмечаются лишь признаки внутриклеточной регенерации, не приводящей к восстановлению их функции.

Заместительная регенерация сетчатки может носить и патологический характер. При этом отмечается избыточное размножение глиальных элементов сетчатки, а также пролиферация соединительнотканных элементов. В результате такого процесса возможно образование тяжей в стекловидном теле, которые могут привести в результате тракции к отслойке сетчатки.

На протяжении многих десятилетий проводятся попытки стимулировать репаративную регенерацию нервной ткани, включая сетчатую оболочку, различными способами. Наибольшее число работ посвящено эффективности трансплантации эмбриональной нервной ткани (сетчатки). Пока эти исследования находятся на стадии экспериментальных разработок. Более подробно можно ознакомиться с решением проблем регенерации сетчатой оболочки в разделе «Регенерация зрительного нерва».

----

Статья из книги: Строение зрительной системы человека | Вит В. В.

Добавить комментарий

Автору будет очень приятно узнать обратную связь о своей новости.

Комментариев 0