+ -
-1
Амакриновые и интерплексиформные клетки


В прошлом веке амакриновые клетки были морфологически исследованы и классифицированы сначала А. С. Догелем [Dogiel, 1888а, b], затем Ramon у Cajal [1972]. А. С. Догелю принадлежит приоритет открытия находящихся среди амакринов нейронов с длинным аксоном (клетка Догеля). Описание разновидностей амакриновых клеток методом Гольджи, данное Ramon у Cajal, до сих пор остается непревзойденным. Стоит лишь упомянуть, что в сетчатке рыбы (карпа) Ramon у Cajal увидел и описал 14 разновидностей этих интересных элементов.

В обзоре по морфологии сетчатки Stell [1972] заметил, что в нашем веке амакриновые клетки почти не изучались. Однако он не совсем прав, так как в 1941 г. обстоятельное описание сетчатки приматов, данное Polyak, частично заполнило эту брешь. В настоящее время многочисленные электронно-микроскопические исследования, а также микроэлектродные электрофизиологические, придали новый интерес проблеме амакриновых клеток.

Новость отредактировал: Dr_Michael - 30-01-2012, 20:36
Причина: Отредактировал новость, вставил фото

+ -
0
Горизонтальные клетки


Электронно-микроскопические наблюдения последних лет, а также электрофизиологические микроэлектродные исследования позволили окончательно установить, что горизонтальные клетки — нейроны и отвергнуть гипотезу о глиальной их природе [Максимова, 1970; Бызов, 1971, 1984; Gouras, 1972; Rodieck, 1973; Gallego, 1976; Naka, 1982].

Сходная дискуссия происходила еще в прошлом веке, когда ряд ученых считали горизонтальные клетки опорными или поддерживающими, a Ramon у Cajal [1972] не сомневался, что они типичные нейроны.
+ -
+2
Анатомия и физиология слёзных органов


Слезопродуцирующая и дренирующая системы обеспечивают выработку и поддержание адекватного количества слёзной жидкости, удаление слезы из глазной щели. Нормальная функция этих систем крайне важна для создания оптически идеальной поверхности роговицы, структурной сохранности её и комфорта глаза. Физиология слезопродукции и распределения слёз требует нормальной структуры и подвижности век.
+ -
0


Первая физиологическая информация на клеточном уровне была получена спустя 250 лет после Ньютона в исследованиях шведско-финско-венесуэльского физиолога Гуннара Светихина, который в 1956 году на костистой рыбе осуществил внутриклеточную регистрацию активности нейтронов сетчатки — сначала он принял их за колбочки, но они оказались горизонтальными клетками.

На освещение сетчатки эти клетки отвечали только медленными потенциалами (потенциалов действия не наблюдалось). Светихин обнаружил три типа клеток: первый тип, названный им L-клетками, гиперполяризовался при световой стимуляции независимо от спектрального состава света; второй тип, названной r-g-клетками, гиперполяризовался волнами малой длины с максимумом ответа на зеленый свет и деполяризовался волнами большой длины с максимумом ответа на красный свет; третий тип, названный с учетом теории Геринга у-клетками, отвечал по типу клеток r-g, но с максимумом гиперполяризации на синий и максимумом деполяризации на желтый свет.
+ -
0


Мозолистое тело представляет собой мощный пучок миелинизированных волокон, соединяющих два полушария мозга. Стереоскопическое зрение (стереопсис) — это способность воспринимать глубину пространства и оценивать удаленность предметов от глаз. Эти две вещи не особенно тесно связаны друг с другом, однако известно, что небольшая часть волокон мозолистого тела все же играет некоторую роль в стереопсисе. Оказалось удобным включить обе эти темы в одну главу, так как при их рассмотрении придется учитывать одну и ту же особенность устройства зрительной системы, а именно то, что в хиазме имеются как перекрещенные, так и неперекрещенные волокна зрительного нерва.
+ -
0


Регистрируя реакции нейронов стриарной коры, мы уже в самом начале заметили, что всякий раз, когда одновременно отводится активность двух клеток, эти клетки оказываются сходными не только по глазодоминантности, но и по оптимальной ориентации стимула. Возникает вопрос: однотипны ли соседние клетки и по всем другим свойствам? Ответ будет отрицательным. Как я уже упоминал, положения рецептивных полей в большинстве случаев не вполне совпадают, хотя поля обычно перекрываются; дирекциональная чувствительность часто бывает противоположной, или же у одной клетки она может быть хорошо выражена, а у другой ее может не быть вовсе. В слоях 2 и 3, где встречаются клетки, реагирующие на концы линий, одна клетка может не проявлять совсем этого свойства, а соседняя — обладать им в полной мере. С другой стороны, две соседние клетки очень редко обнаруживают явное различие в оптимальной ориентации стимула или противоположную глазодоминантность.
+ -
0


По сравнению с наружными коленчатыми телами (НКТ) и сетчаткой первичная зрительная кора, или стриарная кора, — структура гораздо более сложная. Как мы уже видели, резкое увеличение структурной сложности отделов мозга сопровождается таким же усложнением физиологической организации. В стриарной коре мы находим большее разнообразие функциональных типов клеток.

Нейроны стриарной коры отвечают на более сложные стимулы, т. е. стимулы с большим числом параметров, причем эти параметры должны быть вполне определенными. Если при исследовании клеток сетчатки и НКТ нам достаточно было изменять только местоположение и размеры стимула в виде простого пятна, то теперь мы внезапно столкнулись с необходимостью учитывать такие параметры, как ориентация линии, направление движения, длина линии и ее кривизна, а также выбор глаза, на который подается стимул. Какая связь существует между этими параметрами и структурной организацией коры (если она вообще есть)? Для того чтобы подойти к рассмотрению этого вопроса, сначала необходимо сообщить кое-что о строении стриарной коры.
+ -
0


Многие сложные клетки лучше реагируют на движение стимула в одном направлении, чем в противоположном. Различие в реакции часто бывает весьма резким — при одном направлении движения возникает энергичный ответ, а при обратном направлении клетка вообще не отвечает (рис. 48). Как выяснилось, примерно 10—20% клеток в верхних слоях стриарной коры проявляют заметную дирекциональную избирательность. Остальные клетки, по-видимому, не обладают такой избирательностью — мы тщательно исследовали ответы клеток с помощью ЭВМ, пытаясь обнаружить хотя бы небольшое различие в ответах на движение стимула в противоположных направлениях. Таким образом, существуют, видимо, два разных класса клеток — один из них четко проявляет дирекциональную избирательность, другому она не свойственна.
+ -
0


После того как в 1952 году была опубликована первая статья Куффлера о рецептивных полях ганглиозных клеток сетчатки с центром и периферией, открылись пути дальнейшей работы. Чтобы объяснить обнаруженные свойства этих клеток, нужны были дополнительные исследования на уровне сетчатки. Однако требовались также данные о следующих уровнях зрительной системы, чтобы понять, как мозг интерпретирует информацию, доставляемую глазами. Решение этих двух задач было сопряжено с огромными трудностями. При изучении центральных механизмов понадобилось несколько лет, чтобы разработать методику длительной (порядка нескольких часов) регистрации активности одиночной клетки. Еще труднее было подбирать зрительные стимулы, влияющие на эту активность.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
0


Глаз часто сравнивают с фотоаппаратом. Более уместно было бы сравнить его с телевизионной камерой, установленной на треноге, с автоматической системой слежения — машиной, которая самофокусируется, автоматически подстраивается к интенсивности света, имеет самоочищающуюся линзу и присоединена к компьютеру со столь развитыми возможностями параллельной обработки информации, что инженеры еще только начинают обсуждать сходные стратегии для конструируемой ими аппаратуры.

Гигантская работа по преобразованию света, падающего на две сетчатки, в осмысленную зрительную сцену часто странным образом игнорируется, как будто все необходимое нам для того, чтобы видеть, — это изображение внешнего мира, четко сфокусированное на сетчатке. Хотя получение резких изображений и важная задача, она скромна по сравнению с работой нервной системы — сетчатки и мозга. Как мы увидим в этой главе, вклад сетчатки уже сам по себе впечатляет.

Преобразуя свет в нервные сигналы, она начинает извлекать из окружающей среды то, что полезно, и отбрасывать то, что излишне. Никакое человеческое изобретение, включая управляемые компьютером камеры, пока еще не может соперничать с глазом. Эта глава посвящена главным образом нейронной части глаза — сетчатке, но я начну с краткого описания глазного яблока, аппарата, который содержит сетчатку и создает на ней четкое изображение внешнего мира.
+ -
0


Теперь мы можем приспособить нашу первоначальную схему к специальному случаю зрительного пути. Как показано на рисунке, рецепторы и следующие два уровня находятся в сетчатке. Рецепторами служат палочки и колбочки; зрительный нерв — общий выход всей сетчатки — представляет собой пучок аксонов клеток третьего уровня, называемых ганглиозными клетками сетчатки.