+ -
+1

Зрение. Как устроено тело человека 

Издание «Как устроено тело человека» предлагает тебе совершить увлекательное путешествие по человеческому организму с доктором Маэстро и в компании с симпатичными персонажами.

Ты узнаешь, как работает наш организм, как его лечить и как заботиться о нем.

Ты найдешь здесь много новой интересной информации и сможешь начать самостоятельное изучение анатомии человека.

+ -
+6

Практика восстановления зрения при помощи света и цвета. Уникальный метод профессора Олега Панкова 

Прочитав книгу известного российского профессора-офтальмолога Олега Панкова, вы познакомитесь с его уникальным методом восстановления зрения без лекарств и операций, основанным на использовании поляризованного и отраженного света, преломленных световых лучей и биологически активных цветовых диапазонов.

Методика профессора Панкова включает простые и доступные каждому упражнения с пламенем свечи, отражениями в водной и зеркальной поверхностях, цветными фонариками, аквариумными рыбками и другие оригинальные процедуры с естественными и искусственными источниками света, которые помогут читателю улучшить зрительные функции при близорукости, дальнозоркости, астигматизме, катаракте, глаукоме и других офтальмологических заболеваниях.

Многие офтальмологи сегодня с панически страхом относятся к открытым источникам света. Пациентов предупреждают, что яркий свет опасен для них и вынуждают находиться в темноте и носить темные повязки. Однако врач-офтальмолог Олег Панков считает, что глаз - это орган, созданный для восприятия света, и именно лечение солнечным светом, а также магическими кристаллами вернет здоровое зрение.

+ -
+2
Идеальное зрение в любом возрасте. Бейтс
Мало кто из наших современников может похвастаться хорошим зрением. Близорукость или дальнозоркость, астигматизм или амблиопия сопровождают многих из нас на протяжении всей жизни, становясь поводом неисчислимых проблем. Рекомендации же лечащего врача чаще всего ограничиваются выпиской очков, которые необходимо носить всю жизнь.
+ -
+7
Общая трехстадийная модель цветового зрения
Результаты экспериментального исследования взаимосвязи между нейрональной сетью ахроматического зрения, представленной на рис. 4.3.3, и нейрональной сетью хроматического зрения, представленной на рис. 4.3.5, было проведено в работе Измайлова.
С этой целью методом многомерного шкалирования была построена пространственная модель различения монохроматических и ахроматических цветов разной яркости. В результате анализа оказалось, что множество цветов разной яркости можно расположить только в четырехмерном евклидовом пространстве, если исходить из условия линейных соотношений между цветовыми различиями и межточечными расстояниями.
+ -
-2
Психофизиология цветового зрения | Трехстадийная модель ахроматического зрения
В работах Фомина и др., Соколова и Измайлова рассматривается трехстадийная модель ахроматического зрения, базирующаяся на принципе двухканального кодирования интенсивности в зрительной системе и разделении яркостной составляющей излучения от собственно ахроматической составляющей цвета.
Блок-схема' такой модели приведена на рис. 4.3.3. На первой стадии анализ интенсивности излучения осуществляется фотопическими рецепторами сетчатки. Принципы этой работы рецепторов изложены во многих руководствах по психофизике и физиологии зрения (см., например, Вышецки и Стайлс). Суммарный сигнал от трех типов рецепторов сетчатки (log L) передается в нейрональную сеть, которая содержит два реципрокно функционирующих канала — световой (В) и темновой (D). Эта двухканальная сеть представляет вторую стадию анализа интенсивности излучения.
+ -
0
Психофизиология цветового зрения | Модель Гуса
В последние несколько лет внимание исследователей привлекает модель, разрабатываемая Гусом и его сотрудниками. Она основывается на концепции Мюллера, которую иногда называют трехстадийной, поскольку оппонентные каналы в этой концепции подвергаются двухкратному преобразованию.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+1
Психофизиология цветового зрения | Достижения и недостатки одно- и двухстадийных теорий
Главным достижением XIX в. в исследовании цветового зрения явилась математическая модель смешения цветов, основанная на трехкомпонентной теории Юнга—Гельмгольца. Ее теоретическое значение состояло в установлении прямой связи между феноменами цветового смешения и тремя светочувствительными приемниками сетчатки, а практическое — в разработке системы спецификации цвета по спектральному составу излучения (Стандартный Наблюдатель МКО-31).
+ -
0
Психофизиология цветового зрения | Цветовые колонки
Нейроны коры со сходными свойствами группируются в вертикальные столбцы (колонки), идущие радиально от поверхности коры к белому веществу. При микроэлектродном исследовании это проявляется в том, что по мере погружения электрода в глубину коры (перпендикулярно к ее поверхности) по ходу встречаются нейроны с близкими свойствами.
Морфологически колонки выявляются, в частности, по преобладанию вертикальных связей между нейронами внутри колонки над горизонтальными связями между соседними колонками. Деление коры мозга на вертикальные элементарные единицы, объединяющие нейроны из разных слоев, обнаружил методами гистологии Лоренте де Но (1943).
+ -
0
Корреляция спектральных характеристик нейронов НКТ с феноменологией цвета
Реакции RG-, YB- и Wh/Bl-нейронов НКТ хорошо коррелируют с данными психофизических опытов. Де Валуа с соавторами протестировали цветоразличительные «способности» оппонентных и ахроматических клеток НКТ обезьяны методом замены равноярких цветовых стимулов.
Они обнаружили, что Wh/Bl-нейроны не реагируют на цветовые различия («путают» цвета, выравненные по яркости). Кривые спектральной чувствительности этих клеток совпадают по форме с фотопической кривой видности животного. Наименьшие пороги цветовых различий (М, нм) для вызова стандартной реакции имеют нейроны RG-типа в длинноволновой области спектра (570—620 нм), а YВ-нейроны — в длинно- и коротковолновой частях (480—500 нм и 580—620 нм) (рис. 3.3.2).
+ -
0
Психофизиология цветового зрения | Организация афферентных входов
Волокна зрительного нерва оканчиваются на клетках правого и левого наружного (латерального) коленчатого тела (НКТ). НКТ — это основной подкорковый центр зрительной системы, локализующийся в таламусе и осуществляющий пераработку информации, получаемой от сетчатки.
У рыб, амфибий, рептилий, птиц НКТ развито слабо. У насекомоядных и грызунов оно четко подразделяется на дорсальный и вентральный отделы, имеющие различный нейронный состав. Дорсальный отдел — основной для окончания зрительных волокон (аксонов ганглиозных клеток). Он имеет слоистое строение — 4 слоя у хищных, 6 слоев у приматов, у насекомоядных и грызуннов слоистость выражена плохо.
+ -
-1
Реакции фоторецепторов на световое излучение
Суммарный ответ фоторецептора на поток квантов той или иной длины волны света складывается из элементарных дискретных гиперполяризационных реакций, каждая из которых имеет амплитуду 0,2 мВ и возникает на 1 фотон. Отдельный поглолценный фоторецептором квант света с вероятностью 0,7 вызывает фотоизомеризацию молекулы пигмента. В темноте дискретные реакции наблюдаются в наружном сегменте и в отсутствие светового сигнала, что связано со спонтанным (тепловым) распадом молекул фотопигмента.
+ -
0
Неевклидовость ахроматического пространства
Основной ахроматической составляющей апертурного цвета; является светлота. Диапазон ее изменения от ослепительно яркого цвета до очень темного вмещает в себя значительно больше дифференциальных порогов (~300 е.з.р.), чем диапазон изменений цветового тона (=150 е. з. р., включая пурпурные) или насыщенности (от 10 до 30 е. з.р.). Основываясь на характеристиках дифференциальной чувствительности (рис. 2.5.7), Фехнер вывел психофизическую функцию светлоты в виде
Шкалирование надпороговых значений стимулов, которое применил Стивене, а вслед за ним и другие исследователи (Экман и др.), дало результаты, представляющие не логарифмическую, а степенную функцию: