Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+2
Зрение | Функциональные асимметрии
С помощью глаз воспринимается 90 % информации [Линдгрен Н., 1962].

Зрением человек воспринимает «электромагнитное излучение в диапазоне волн от 400 до 750 нм» [Грюссер О., 1985]. В бинокулярном зрении, по Г. А. Литинскому (1929), зрительные впечатления каждого из глаз обладают неодинаковой силой и качеством, «перевешивает впечатлительная способность одного из глаз и это превалирование чаще на правом глазу». У 92,6 % изученных лиц им установлена асимметрия: правосторонняя — у 62,6 %, левосторонняя — у 30 %, симметрия — у 7,4 %. Бинокулярное зрение — «сложение разных монокулярных функций», которое «совершеннее» функций каждого из глаз в отдельности [Ананьев Б. Г., 1960].
+ -
0


Глаз часто сравнивают с фотоаппаратом. Более уместно было бы сравнить его с телевизионной камерой, установленной на треноге, с автоматической системой слежения — машиной, которая самофокусируется, автоматически подстраивается к интенсивности света, имеет самоочищающуюся линзу и присоединена к компьютеру со столь развитыми возможностями параллельной обработки информации, что инженеры еще только начинают обсуждать сходные стратегии для конструируемой ими аппаратуры.

Гигантская работа по преобразованию света, падающего на две сетчатки, в осмысленную зрительную сцену часто странным образом игнорируется, как будто все необходимое нам для того, чтобы видеть, — это изображение внешнего мира, четко сфокусированное на сетчатке. Хотя получение резких изображений и важная задача, она скромна по сравнению с работой нервной системы — сетчатки и мозга. Как мы увидим в этой главе, вклад сетчатки уже сам по себе впечатляет.

Преобразуя свет в нервные сигналы, она начинает извлекать из окружающей среды то, что полезно, и отбрасывать то, что излишне. Никакое человеческое изобретение, включая управляемые компьютером камеры, пока еще не может соперничать с глазом. Эта глава посвящена главным образом нейронной части глаза — сетчатке, но я начну с краткого описания глазного яблока, аппарата, который содержит сетчатку и создает на ней четкое изображение внешнего мира.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
0


В предыдущей статье я подчеркивал, что первичная зрительная кора кажется морфологически однородной как невооруженному глазу, так и под микроскопом при использовании большинства обычных методов окрашивания. Однако при более тщательном изучении выяснилось, что однородна и топография колонок глазодоминантности: период чередования зон доминирования левого и правого глаза остается на удивление постоянным от проекции центральной ямки (точки фиксации) до дальней периферии бинокулярной части поля зрения. При помощи метода с инъекцией дезоксиглюкозы мы выявили также однородность топографии ориентационных колонок.
+ -
0


Первая физиологическая информация на клеточном уровне была получена спустя 250 лет после Ньютона в исследованиях шведско-финско-венесуэльского физиолога Гуннара Светихина, который в 1956 году на костистой рыбе осуществил внутриклеточную регистрацию активности нейтронов сетчатки — сначала он принял их за колбочки, но они оказались горизонтальными клетками.

На освещение сетчатки эти клетки отвечали только медленными потенциалами (потенциалов действия не наблюдалось). Светихин обнаружил три типа клеток: первый тип, названный им L-клетками, гиперполяризовался при световой стимуляции независимо от спектрального состава света; второй тип, названной r-g-клетками, гиперполяризовался волнами малой длины с максимумом ответа на зеленый свет и деполяризовался волнами большой длины с максимумом ответа на красный свет; третий тип, названный с учетом теории Геринга у-клетками, отвечал по типу клеток r-g, но с максимумом гиперполяризации на синий и максимумом деполяризации на желтый свет.