+ -
0

Зрительные функции 

Основной функцией зрительного анализатора человека является восприятие света, а также формы предметов окружающего мира и их положения в пространстве. Свет вызывает сложные изменения в сетчатке, обусловливающие так называемый зрительный акт.

Считается, что световое раздражение в первую очередь воспринимает родопсин (зрительный пурпур).

Трансформация световой энергии в сетчатке осуществляется в результате процессов жизнедеятельности фоторецепторов — палочек и колбочек, включающих в себя фотохимические реакции разрушения и восстановления родопсина в тесной связи с обменом веществ. Продукты химических превращений в фоторецепторах, а также возникающие при этом электрические потенциалы служат раздражающим фактором для других слоев сетчатки, где возникают импульсы возбуждения, несущие зрительную информацию к ЦНС. Возбуждение от палочек и колбочек передается на биполярные и ганглиозные клетки сетчатки. Непрерывный фотохимический процесс (синтез родопсина) невозможен без наличия витаминов А и В2, аденозинтрифосфорной кислоты (АТФ), никотинамида и др. При недостатке в организме этих веществ нарушаются такие зрительные функции, как светоощущение, адаптация, развивается гемералопия (куриная слепота). Однако процесс восприятия, как правило, не ограничивается зрением, но предполагает осязательные, вкусовые ощущения. Процессы зрительного восприятия, протекающие в глазу, являются неотъемлемой частью деятельности мозга. Они тесно связаны с мышлением.

Вследствие ограниченной скорости света (3x1010см/с) и определенной задержки нервных импульсов, поступающих в мозг, человек видит прошлое (исчезнувшее). За одну секунду световой луч успевает более 7 раз промчаться вокруг Земли.

Воспринимающая свет сетчатка в функциональном отношении может быть разделена на центральную (область пятна сетчатки) и периферическую (вся остальная поверхность сетчатки). Соответственно этому различают центральное и периферическое зрение. Кроме того, выделяют еще характер зрения (монокулярное, бинокулярное).

Наиболее совершенное зрительное восприятие возможно при условии, если изображение предмета падает на область пятна сетчатки, особенно его центральной ямки. Периферическая часть сетчатки этой способностью обладает в значительно меньшей степени. Чем дальше от центра к периферии сетчатки проецируется изображение предмета, тем менее оно отчетливо.

Центральный аппарат сетчатки (колбочки) обеспечивает дневное, фотопическое, зрение (острота зрения и цветоощущение), а периферический (палочки) — ночное (скогопическое), или сумеречное (мезопическое), зрение (светоощущение, темновая адаптация).

+ -
+1

Цветовое зрение. Кравков С.В. 

Цель настоящего очерка осветить природу цветового зрения как одного из важнейших средств познания окружающего мира.

Автор стремился выяснить значение, которое имеет вопрос о цветовом зрении исходя из теории отражения.

Кроме того, автору хотелось показать, что наиболее вероятное и самое простое решение вопроса о нервном аппарате, дающем возможность адекватно отображать цветовые свойства вещей, было высказано впервые Ломоносовым.

Дельнейший прогресс науки о цветовом зрении представляет собой в сущности уточнение и развитие его идей - идей трёхкомпонентности цветового зрения.

Излагая современное состояние этой теории, автор, естественно, старался подытожить данные своих работ и работ своих сотрудников по изучению цветового зрения методом непрямых раздражений.

Работы эти дают новый материал, иллюстрирующий идеи И. П. Павлова о неразрывной связи зрительного анализатора с организмом как целым и вместе с тем конкретизируют применительно к цветовому зрению идеи ионной теории возбуждения, развивавшиеся П. П. Лазаревым.

Рассмотрение проблемы цветового зрения в настоящем очерке отнюдь не исчерпывающее. Это хорошо сознает автор.

Более сложные вопросы психологии восприятия цветов, тесно связанные с общими вопросами психологии восприятия и мышления, в этой книге не затрагиваются.

Здесь дан лишь анализ более простых закономерностей, лежащих в основе цветовых ощущений.

Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
0

Психофизиология цветового зрения. Измайлов Ч.А., Соколов Е.Н., Черноризов А.М. 

Только сравнивая изображения на экранах цветного и черно-белого телевизоров, осознаешь, как много значит в нашей жизни цвет.

Как же устроено наше зрение, что мы видим мир не черно-белым, а цветным?

Естественно-научные исследования цветового зрения, начатые великим Ньютоном, активно продолжаются и в настоящее время.

В монографии излагаются история и современное состояние исследований по психофизике, нейрофизиологии и математическому моделированию цветового зрения человека и животных.

Книга предназначена для студентов психологических и биологических факультетов, а также для широкого круга специалистов — художников, светотехников, дизайнеров, колорнметристов, медиков и др., — имеющих практическое отношение к цвету и интересующихся проблемами цветового зрения.

+ -
-1
Цветоощущение и методы его исследования | Офтальмология
Человеческий глаз различает электромагнитные волны световой части (от 396 до 760 нм) по их длине.
Восприятие зрительным анализатором волн различной длины человек определяет, как различные цвета. Вся световая часть электромагнитных волн создает цветовую гамму с постепенным переходом от красного до фиолетового (цветовой спектр).
Спектр состоит из 7 основных цветов (красного, оранжевого, желтого, зеленого, голубого, синего, фиолетового), но глаз различает промежуточные оттенки цвета, расположенные между основными цветами и полученные от смешения и вычитания цветов. Эмпирически установлено, что человек может различить до 150 000 цветовых тонов и оттенков.
+ -
+5
Общая трехстадийная модель цветового зрения
Результаты экспериментального исследования взаимосвязи между нейрональной сетью ахроматического зрения, представленной на рис. 4.3.3, и нейрональной сетью хроматического зрения, представленной на рис. 4.3.5, было проведено в работе Измайлова.
С этой целью методом многомерного шкалирования была построена пространственная модель различения монохроматических и ахроматических цветов разной яркости. В результате анализа оказалось, что множество цветов разной яркости можно расположить только в четырехмерном евклидовом пространстве, если исходить из условия линейных соотношений между цветовыми различиями и межточечными расстояниями.
+ -
0
Психофизиология цветового зрения | Трехстадийная модель хроматического зрения
Результаты многомерного шкалирования больших цветовых различий между равнояркими стимулами, позволяют построить трехстадийную модель хроматического зрения. Блок-схема этой модели, взятая из работы Соколова и Измайлова, приведена на рис. 4.3.5. Как и в случае модели ахроматического зрения, входное звено этой нейронной сети, осуществляющей хроматический анализ световых излучений, представлено тремя типами рецепторов с максимумами чувствительности в коротковолновой, средневолновой и длинноволновой частях видимого спектра. Далее информация обрабатывается в системе двух оппонентных хроматических каналов (r—g и у—b) и одного неоппонентного ахроматического канала (Wh-bk).
+ -
0
Психофизиология цветового зрения | Модель Гуса
В последние несколько лет внимание исследователей привлекает модель, разрабатываемая Гусом и его сотрудниками. Она основывается на концепции Мюллера, которую иногда называют трехстадийной, поскольку оппонентные каналы в этой концепции подвергаются двухкратному преобразованию.
+ -
0
Психофизиология цветового зрения | Достижения и недостатки одно- и двухстадийных теорий
Главным достижением XIX в. в исследовании цветового зрения явилась математическая модель смешения цветов, основанная на трехкомпонентной теории Юнга—Гельмгольца. Ее теоретическое значение состояло в установлении прямой связи между феноменами цветового смешения и тремя светочувствительными приемниками сетчатки, а практическое — в разработке системы спецификации цвета по спектральному составу излучения (Стандартный Наблюдатель МКО-31).
+ -
0
Психофизиология цветового зрения | Модель Воса и Уолравена
Из математических моделей, разрабатываемых в рамках двух стадийной концепции, наиболее развитой в настоящее время является шаровая модель Воса и Уолравена. Вое и Уолравен приняли на вооружение все основные идеи Гельмгольца, за исключением характеристики дифференциальной чувствительности рецепторных приемников.
+ -
0
МАТЕМАТИЧЕСКАЯ ПСИХОФИЗИОЛОГИЯ ЦВЕТОВОГО ЗРЕНИЯ | Модель Стайлса
Последняя серьезная попытка реанимации одностадийной трехкомпонентной теории была сделана Стайлсом. Стайлс основывался на большом массиве измерений, проведенных методом двухцветного порога. По результатам этих измерений Стайлс вывел свои функции спектральной чувствительности рецепторов сетчатки. Это привело его к выводу, что вклад каждого приемника в цветоразличение не одинаков, он рассчитал пропорции вкладов приемников и изменил выражение (4.1.3) следующим образом:
+ -
+2
Особенности процессов кодирования цвета в престриарной зоне V4
В престриарной коре обезьяны выделяют зону V4, специфическим образом связанную с кодированием цвета (рис. 3.4.1). V4 получает основные афферентные входы от полей 18 и 19 и частично от поля 17. Из V4 сигналы поступают в нижневисочную кору. В V4 представлена только центральная часть поля зрения (20-30°). РП нейронов этой зоны имеют небольшой по размерам (15-20°), наличие которой можно выявить только по ее тормозному влиянию на реакцию центра.
За счет больших размеров периферии рецептивные поля нейронов V4 в среднем в 30 раз превышают по площади РП нейронов стриарной коры. Тормозное воздействие периферии РП максимально, если свойства проецируемого на нее стимула совпадают (или близки) со свойствами стимула, возбуждающего центр (размеры, спектральный состав и др.). В зоне V 4 отсутствует ретинотопическая проекция.
+ -
0
Психофизиология цветового зрения | Цветовые колонки
Нейроны коры со сходными свойствами группируются в вертикальные столбцы (колонки), идущие радиально от поверхности коры к белому веществу. При микроэлектродном исследовании это проявляется в том, что по мере погружения электрода в глубину коры (перпендикулярно к ее поверхности) по ходу встречаются нейроны с близкими свойствами.
Морфологически колонки выявляются, в частности, по преобладанию вертикальных связей между нейронами внутри колонки над горизонтальными связями между соседними колонками. Деление коры мозга на вертикальные элементарные единицы, объединяющие нейроны из разных слоев, обнаружил методами гистологии Лоренте де Но (1943).