+ -
0
Функциональная структура зрительного поля
Рассмотрим, как распределяются ошибки опознания в том предельном случае, когда метка отсутствует вообще (PТ0). Это распределение является своеобразной системой отсчета, выражающей устойчивую структуру перцептивных отношений (зрительного поля) на исходной стадии микропроцесса зрительного восприятия.
+ -
0
Перцептивный контекст фиксационных поворотов глаз
В заключительном разделе монографии будут рассмотрены закономерности развития зрительного образа в тот короткий отрезок времени, когда наблюдатель меняет предмет восприятия, переходя от одного элемента или отношения среды к другому. Перцептивная микродинамика выступает здесь как содержательный контекст фиксационных поворотов глаз, определяющий способ их выполнения и смысл.
+ -
0
Движения глаз и зрительное восприятие в условиях трансформированной зрительной обратной связи
В данном разделе были рассмотрены внутренние условия выполнения целенаправленных поворотов глаз, преломляющие действие внешних детерминант. Искусственно меняя свойства канала зрительной обратной связи ГДС, мы попытались вывести ее из стационарного состояния, для того, чтобы выявить (1) основные феномены и механизмы работы ГДС в необычных обстоятельствах, (2) условия реализации и восстановления целенаправленной окуломоторной активности, а также (3) последствия дискоординации движений глаз для организации зрительного перцептивного процесса. Итоги проведенных исследований можно суммировать следующим образом.
+ -
0
Окуломоторное копирование как феномен зрительного восприятия
Полученный экспериментальный материал затрагивает еще один аспект зрительного восприятия, который получил название «копирование» (copying) или, в русскоязычной литературе, «уподобление».

Перцептивно-окуломоторное соответствие. Понятие окуломоторного копирования опирается на группу фактов, демонстрирующих сходство (подобие) 1) пространственно-временных характеристик среды, 2) паттернов движений или направлений глаз (окуломоторных структур) и 3) содержания зрительного образа. Так, чем точнее прослеживается движущийся объект, тем точнее оценивается его направление и скорость; их рассогласование становится причиной иллюзий восприятия движения (Согеп, Bradly, Hoenig, Girgus, 1975; Festinger, Easton, 1974). Совокупная траектория перемещений глаз повторяет контуры и расположение существенных деталей сложного изображения (Рис. 3.47), что является условием его адекватного восприятия (Ярбус, 1965). В зависимости от расположения стрел фигуры Мюллера-Лайера точки фиксации распределяются либо внутри фигуры, либо с ее внешней стороны, чему соответствует недооценка либо переоценка центрального отрезка (Coren, 1986) и т. п. В психологии восприятия это понятие занимает одно из ключевых мест (хотя и не всегда формулируется), направляя исследовательскую мысль на поиск двигательных механизмов «превращения» окружающей наблюдателя действительности в факт его чувственного (зрительного) опыта.
+ -
0
Окуломоторные структуры и стабильность воспринимаемого мира
Условия проведенного исследования в некоторых существенных отношениях (? = ±180°) воспроизводят условия экспериментов Е. Хольста и Г. Миттельштадта (Holst, 1954; Holst, Mittelstaedt, 1973), а также Р. Сперри (Sperry, 1943; 1950), которые показали, что различные преобразования канала зрительной обратной связи оптомоторной системы низших животных ведут к нарушению привычных форм поведения. Например, если голову насекомого повернуть на 180° вокруг продольной оси тела и зафиксировать относительно грудной клетки, то при спонтанной локомоции в гетерогенной среде, начав движение, оно будет кружиться на месте до истощения. Сходные эффекты наблюдаются у рыб и амфибий, глаза которых поворачиваются на 180° вокруг оптической оси. На основании полученных данных, исследователи пришли к заключению, что двигательные акты управляются посредством зрительной обратной связи, а конкретный поведенческий акт строится как процесс взаимокомпенсации, или согласования двигательной (эфферентной) и оптической (реафферентной) информации. Иллюстрируя универсальность теоретической модели, авторы распространили ее на объяснение феноменов стабильности воспринимаемого мира, хотя специальных экспериментов в этой области не проводили. Именно в работах Е. Хольста, Г. Миттельштадта и Р. Сперри принцип обратной связи (реафферентации) выступил в двух «ипостасях»: как механизм управления окуломоторной активностью и как механизм константности зрительного направления.
+ -
+1
Природа специфических окуломоторных структур
Для того, чтобы прояснить состав и динамику внутренних детерминант фиксационного поворота глаз, обратимся к анализу причин, обусловливающих возникновение необычных окуломоторных структур при |?| ? 90°. Впрочем, эта необычность довольно условна и относительна.

С точки зрения механики управляемое звено ГДС представляет собой однозвенный физический маятник, раскачивающийся в инерционном поле. Поэтому перемещение глаз по эллиптическим траекториям и регулярная структура движений вполне закономерны. Подобными кинематическими свойствами обладает тремор, диагональные саккады, дрейф закрытых глаз человека в состоянии медитации, торзионные движения и др. Наиболее типичной формой колебательных процессов является нистагм. Он имеет две основные разновидности: маятнико- и пилообразную, обнаруживается уже на ранних стадиях онтогенеза ГДС (Гатев, 1973; Митькин, 1988; Сергиенко 1992) и вызывается зрительной (Die, Collewijn, 1982), вестибулярной (Курашвили, Бабияк, 1975), акустической (Lackner, 1977), гаптико-кинестетической (Bеchele, Arnold, Brandt, 1978) стимуляцией, а также произвольно, по представлению движущейся регулярной структуры (Zikmund, 1985). Нистагм — обычная реакция на нарушения ГДС и ее межсистемных связей (Благовещенская, 1968; Шахнович, 1974; Bender, 1955; Lawrence, Lightfoot, 1975). Яркой иллюстрацией вынужденных колебательных процессов в ГДС в связи с неполадками управления плавными движениями глаз может служить врожденный нистагм, имеющий большое разнообразие видов и переходных форм (Dell'Osso, Flin, Daroff, 1974; Dell’Osso, Daroff, 1975).
+ -
0
Условия окуломоторной адаптации
Прежде, чем перейти к анализу механизмов специфических окуломоторных структур, целесообразно рассмотреть данные, которые, казалось бы, выходят за рамки изложенных представлений. Речь пойдет о случаях оперативной адаптации ГДС с положительной зрительной обратной связью (??? = 180°).

Согласно А. Р. Шахновичу (1974), устойчивая фиксация светящейся точки в темноте возможна через 1,5-2 минуты после ее появления. В течение этого времени происходит смена окуломоторных структур, специфичных для условий положительной зрительной обратной связи: сначала возникают крупноамплитудные синусоидальные колебания, затем—нистагм, и, наконец,— малоамплитудный дрейф (Рис. 3.12). Этот порядок может быть интерпретирован как последовательная смена стадий оперативных преобразований ГДС.
+ -
+1
Адаптивность глазодвигательной системы
Наличие «гомологического ряда» окуломоторных структур выражает последовательно возрастающую дискоординацию процессов, реализующих фиксационный поворот глаз. Источник описанных нарушений—изменение зрительной экс- и реафферентации (Holst, Mittelstaedt, 1973); их основание—рассогласование способов получения и использования зрительной афферентации в организации окуломоторного акта, дивергенция его сенсорных (зрительных) и двигательных компонентов. В обычной ситуации эти образования хорошо скоординированы и действуют как бы в одном направлении. «Взаимосодействие» (П. К. Анохин), или конвергенция, сенсорных и моторных компонентов позволяет наблюдателю оперативно решать широкий спектр зрительных, двигательных и поведенческих задач. При искусственном вращении оптической системы координат способ построения окуломоторного акта (зрительно-окуломоторное соответствие) в целом сохраняется, но его результат оказывается неадекватным эгоцентрическому направлению объекта восприятия. Фиксационная саккада на эксцентрично расположенный тест-объект не приводит к достижению цели, а лишь меняет положение его проекции относительно fovea centralis, что стимулирует появление новой саккады и ускоренного дрейфа. Фиксационный поворот как бы развертывается в пространстве и времени, причем, чем больше абсолютное значение у, тем продолжительнее и экстенсивнее оказывается глазодвигательная активность. При ??? = 180° способы получения и использования зрительной афферентации расходятся в диаметрально противоположных направлениях; «взаимосодействие» сменяется противодействием, а целенаправленный поворот глаз, завершающийся собственно фиксацией объекта оказывается невозможным.
+ -
0
Оптическая трансформация фиксационных поворотов глаз
Рассмотрим полученные данные в порядке возрастания абсолютного значения угла поворота оптической системы координат сетчатки (|?| ).

|?| — 0°—условие обычного восприятия. Перевод взора с одного точечного объекта на другой сопровождается сравнительно точным скачком на цель и ее устойчивой фиксацией (Рис. 3.23, А). Скорость дрейфа редко достигает 1°/с, а его амплитуда не превышает 1°. Единственное, что отличает полученные записи от обычных, — небольшие «пички» перед остановкой глаза (0,3°-1,5° в зависимости от амплитуды саккады), которые указывают на «проскакивание» точечной цели и почти безостановочное возвращение к ней. Подобные движения известны в литературе как «динамический перескок». В его основе лежит изменение инерционности глазного яблока, связанное с относительно большим весом используемой оптической системы. При выполнении саккады, включающей «пичек», воспринимается слабое подергивание объектов поля зрения, феноменологически тождественное перцептивным эффектам, которые возникают при моргании или постукивании по глазу пальцем.
+ -
+1
Направление зрительной обратной связи
Как мы могли убедиться, смещения ретинального образа объекта во время движений глаз играют двоякую роль. С одной стороны, они обеспечивают зрительную обратную связь ГДС (реафферентацию окуломоторного акта), с другой—являются условием константности зрительного направления. Меняя сложившиеся ретино-окуломоторное соответствие исследователь получает возможность изучить особенности организации фиксационных поворотов глаз и их функции в зрительном восприятии.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
0
Константность зрительного направления
Несмотря на движения глаз и соответствующие им смещения ретинального образа воспринимаемый нами мир остается стабильным: не «прыгает» во время саккад и не «сплывает» во время дрейфа. Относительное постоянство эгоцентрической локализации объектов непосредственно до, во время и после завершения поворота глаз — это явление получило название константности зрительного направления, или стабильности видимого мира — характеризует один из основных каналов включения окуломоторной активности в процесс зрительного восприятия.
+ -
+5
Функциональная организация фиксационных поворотов глаз в процессе зрительного восприятия
В предыдущем разделе фиксационный поворот глаз рассматривался довольно абстрактно—как двигательный автоматизм (окуломоторный навык), характеристики которого определяются локализацией, конфигуративными особенностями поверхности объекта восприятия, решаемой задачей и социокультурной принадлежностью наблюдателя. В действительности же он имеет собственную организацию и подчиняется действию не только внешних, но и внутренних детерминант. К их числу относятся прогнозирование конечного и/или промежуточного результата, способ управления движениями глаз, ведущий уровень, на котором они строятся, сопряженность окуломоторики с другими двигательными актами наблюдателя и т. п. Действие внешних детерминант фиксационного поворота глаз всегда опосредствовано констелляцией его внутренних условий. Вез их учета анализ окулограмм оказывается неполным или недостаточно корректным. Именно внутренние условия целенаправленных движений являются, источником дисперсии амплитуды саккад, нелинейности и ограниченности влияния внешних детерминант, а также сложных по составу поворотов глаз. Анализу этих условий посвящен третий Раздел книги. Мы рассмотрим закономерности функционирования ГДС с измененным направлением зрительной обратной связи и каналы ее включения в процесс зрительного восприятия. Излагаемые здесь исследования конкретизируют возможности еще одного—электромагнитного—метода регистрации движений глаз.