+ -
0
Зрительный комфорт
Хорошее освещение должно удовлетворять многим требованиям, которые можно разделить на количественные и качественные. Количественные определяются уровнем необходимой освещенности, качественные — спектральным составом света и распределением его в пространстве.
+ -
0
Свет и цвет
До сих пор мы говорили о способности глаза воспринимать световые воздействия, каждое из которых определяется одной скалярной величиной, прежде всего яркостью. Шкала яркостей располагается вдоль одной линии, яркостный контраст тоже одномерен. Однако в природе постоянно встречаются предметы одинаковой яркости, а тем не менее глаз хорошо отличает их друг от друга. Они отличаются по качеству отраженного от них света, по его спектральному составу, например зеленый лист и красная роза. Таким образом, кроме количественных характеристик света глаз воспринимает и различает его качественные характеристики. Объясняется это тем, что аппарат дневного зрения (колбочковый) имеет три приемника света с различной селективной чувствительностью. Условно их называют красным, зеленым и синим. Благодаря наличию этих селективных приемников глаз способен ощущать не только яркость, но и цветность предмета. Цветность в свою очередь тоже сложное понятие. Красная роза может быть насыщенно красной, а может быть и розовой, т. е. бледно-красной. Слово «красный» приближенно определяет то, что в науке о цветовых измерениях — колориметрии — называют цветовым тоном излучения, а уточнение «бледно» характеризует малую насыщенность или, если применить колориметрический термин, малую чистоту цвета. Итак, цвет можно определить тремя величинами: яркостью L, цветовым тоном ?, чистотой цвета р. Монохроматическое излучение любой области спектра обладает чистотой р, равной единице. Примесь белого понижает р, и для белого цвета р = 0. Но пока нам важно одно: цвет полностью может быть определен тремя числами.
+ -
0
Глаз как приемник информации
В свете, излучаемом различными источниками или отражаемом предметами, содержится ценнейшая информация об обстановке, в которой мы находимся. Но использовать эту информацию можно только с помощью того или иного зрительного устройства, в частности (и это очень важная частность) с помощью глаза.
+ -
+1
Пороговые условия
Зрение человека обычно характеризуют несколькими функциями, прежде всего тремя: световой чувствительностью, контрастной чувствительностью и остротой зрения. Чаще, впрочем, приводят обратные величины (иногда и не оговаривая этого): пороговую яркость, пороговый контраст, предельный угол разрешения.
+ -
-1
Яркость и острота зрения
В гл. 2 упоминалось о том, что острота зрения соответствует дифракционной формуле, т. е. зрение полностью использует возможности, предоставляемые ему волновой природой света. Однако известно, что острота зрения уменьшается с падением яркости наблюдаемой картины и становится значительно ниже предела, обусловленного дифракционной формулой, в которую яркость вообще не входит.
+ -
+1
Стробоскоп
С инерцией зрения принято связывать обширный и неточно очерченный круг явлений, называемых стробоскопическими. Общее у них одно: все они связаны с прерывистым наблюдением. Способы, которыми оно достигается, очень разнообразны, и результаты весьма различны: кажущееся движение неподвижных объектов (кино), видимость нескольких объектов вместо одного (стробоскопический эффект безынерционных ламп), видимая неподвижность движущихся тел.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+1
Инерция зрения
При заточке на точильном круге стального инструмента из него вырывается веер искр — яркие полосы длиной 30—60 см. Это раскаленные крупинки наждака и стали, быстро пролетающие в воздухе. Но видим мы не движущуюся крупинку, а всю ее траекторию одновременно: когда крупинка остывает и погасает в конце своего пути, глаз еще сохраняет впечатление от ее яркости в момент вылета. Здесь наглядно проявляется инерционность зрительной системы или, короче, инерция зрения.
+ -
0
Кодирование зрительной информации
Оптическая система каждого глаза создает на сетчатке картину, соответствующую проекции объектов внешнего мира на сферическую поверхность дна глаза. Различия в яркости объектов и их деталей передаются в виде различий в освещенности разных мест изображения. В другом глазе получается картина, похожая на первую, но не совпадающая с ней из-за того, что другой глаз находится на некотором расстоянии от первого. В паре изображений содержится информация о величине, форме и взаимном расположении предметов по всем трем координатам пространства. Эту информацию нужно передать в мозг и рационально обработать.
+ -
0
Движение глаз
Глаз — это широкоугольная оптическая система, т. е. система с большим полем зрения. Поле зрения глаза исследуют с помощью приборов, называемых периметрами.
+ -
+1
Адаптация
Адаптацией называется перестройка зрительной системы для наилучшего приспособления к данному уровню яркости. Глазу приходится работать при яркостях, меняющихся в чрезвычайно широком диапазоне, примерно от 104 до 10-6 кд/м2, т. е. в пределах десяти порядков. При изменении уровня яркости поля зрения автоматически включается целый ряд механизмов, которые и обеспечивают адаптационную перестройку зрения. Если уровень яркости длительное время существенно не меняется, состояние адаптации приходит в соответствие с этим уровнем. В таких случаях можно говорить уже не о процессе адаптации, а о состоянии: адаптации глаза к такой-то яркости L.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
0
Световая чувствительность
Основное свойство рецепторов сетчатки — световая чувствительность, т. е. способность, поглощая свет, инициировать первую ступень сложного зрительного процесса. Чувствительность фоторецепторов к свету чрезвычайно велика: рецептор способен генерировать импульс возбуждения при поглощении всего нескольких, быть может только двух, фотонов. Но вероятность того, что фотон будет поглощен светочувствительным веществом рецептора, в сильной степени зависит от энергии фотона, т. е. от частоты или длины волны излучения. Зависимость вероятности поглощения фотона от длины его волны лежит в основе световой фотометрии, обуславливая способ пересчета энергетических величин в световые, прежде всего мощности излучения Р (Вт) в световой поток Ф (лм). Первые фотометрические измерения, еще в XVIII в. проводились при достаточной освещенности, когда хорошо различаются цвета, т. е. когда работают колбочки. Поэтому основные фотометрические величины были установлены для дневного, колбочкового зрения. В основу была положена единица силы света — свеча. Сначала это была просто свеча типа восковой или стеариновой, потом старались обусловить материал и диаметр свечи, затем воспроизводили эталон в виде пламенной лампы с определенными конструкционными ее параметрами (свеча Гефнера). В двадцатом веке световые эталоны были созданы в виде ламп накаливании. Во второй половине нашего столетия в основу эталона силы света было положено излучение черного тела при температуре затвердевания платины. Сила света одного квадратного сантиметра черного тела при температуре 2042 К принята равной 60 свечам или по современной терминологии 60 канделам (60 кд). Устройство первичного светового эталона достаточно сложно.
+ -
0
Сетчатка
Фоторецепция, т. е. восприятие света и переработка его энергии в другие виды энергии — химическую и электрическую, происходит в сетчатке.

Уже более ста лет тому назад было установлено, что в сетчатке имеются два вида фоторецепторов — палочки и колбочки (рис. 16). Палочки очень чувствительны к свету, но не различают цветов. Цветовое зрение обеспечивают колбочки. Строение сетчатки чрезвычайно сложно. Обычно в ней различают десять слоев, схематически изображенных на рис. 17.