+ -
0
Ганглиозные клетки
Анализ излучения в сетчатке завершается в слое ганглиозных клеток, реакции которых, состоящие из последовательностей импульсов, передаются в подкорковые зрительные центры — верхнее двухолмие и наружное коленчатое тело.
Морфологические типы ганглиозных клеток. В течение последних десятилетий проведено большое число исследований морфологии ганглиозных клеток сетчатки у животных разного уровня эволюционного развития. Данные этих исследований представляют интерес в связи с интенсивным развитием в современных нейронауках структурно-функционального подхода, основанного на выявлении закономерных связей между морфологией и функцией нейронных образований мозга.
+ -
0
Биполярные клетки
Биполяры оn- и оff-типов. Биполярные клетки связывают рецепторные входы сетчатки с ее выходными элементами — ганглиозными клетками. Через биполяры каждая ганглиозная клетка соединена со многими тысячами фоторецепторов и каждый рецептор — с несколькими ганглиозными клетками.
При всем многообразии морфологических типов физиологически выделяют два основных типа этих клеток: деполяризационные (оff-клетки) и гиперполяризационные (оff-клетки). Оff-биполяры реагируют деполяризацией на освещение центра рецептивного поля пятном света с диаметром 100-200 мкм (это примерно соответствует области ветвления дендритов биполярной клетки), а оff-биполяры на тот же стимул реагируют гиперполяризацией.
+ -
0
Зрительные фотопигменты
Кванты света поглощаются в рецепторах специализированны ми молекулами — зрительными фотопигментами. Зрительные пигменты были открыты независимо друг от друга немецкими физиологами Ф. Боллем и В. Кюне в 1877—1879 гг. Ф. Болль заметил, что выделенная из зрительного бокала лягушки сетчатка поначалу выглядит красной, а затем, выцветая на свету, становится желтой и, наконец, совсем бесцветной.
+ -
0
Цветовые сходства и различия
Представим себе, что у нас имеются две установки Ньютона для смешивания цветов и мы их расположим так, чтобы цветовые лучи от них проецировались на соседние участки фовеальной области сетчатки. Наблюдатель будет видеть два цвета, расположенных рядом в поле зрения, а экспериментатор может изменять цвет каждого поля в отдельности.
Если мы предъявим испытуемому два монохроматических луча, например, с длиной волны 570 нм, то он увидит два одинаковых желтых цвета. Можно сказать, что такие два цвета имеют полное (максимальное) субъективное сходство и не имеют никакого субъективного различия, т. е. нулевого различия. Начнем добавлять к одному из желтых цветов монохроматический красный цвет.
+ -
0
Влияние яркости на хроматичность спектральных цветов
Рассмотренные в предыдущем разделе характеристики спектральных цветов были получены на одном и том же уровне либо фотометрической яркости, либо светлоты. Что произойдет с этими характеристиками при изменении уровня яркости в большую или меньшую сторону?
Влияние яркости на цветовой тон. Феномен Бецольда—Брюкке. Изменение яркости спектральных стимулов в значительной степени меняет цветовые тона излучений (рис. 2.4.6). При увеличении яркости крайние коротковолновые излучения (420—460 нм) из фиолетовых превращаются в синие, то же самое происходит с голубыми и сине-зелеными цветами спектра (480—495 нм), а зеленые и зелено-желтые цвета из средневолнового участка спектра (505—560 нм) превращаются в желтые.
+ -
0
Спектральная чувствительность зрения
Скотопическое зрение. Абсолютная сенсорная чувствительность определяется как величина, обратная абсолютному порогу. Порогом называется наименьшая величина стимульной энергии, вызывающая специфическую ответную реакцию сенсорной системы. Поэтому данную величину стимула часто обозначают термином нижний абсолютный порог, в отличие от верхнего абсолютного порога, как наименьшего стимула, вызывающего неспецифическую (обычно болевую) реакцию сенсорной системы.
+ -
0
Многомерное шкалирование. Построение метрической модели субъективных различий
В ходе построения пространственной модели данных необходимо измерять расстояния между точками-стимулами, чтобы соотносить их с исходными оценками различий. Для измерения расстояний в пространстве вводится метрика. Выбор метрики для психологического пространства также основывается скорее на содержательных аспектах данных, чем на формальных.
+ -
0
Многомерное шкалирование. Матрица попарных сходств или различий
Для многомерного шкалирования существенным является определенная организация исходного экспериментального материала в так называемую матрицу сходств. Элементом матрицы (Sij) является некоторая мера сходства между парой стимулов i и j или обратная ей величина Dij — мера различия.
Оценки различий можно получить от испытуемого разными методами. В каждом случае выбор метода шкалирования различий зависит от конкретных экспериментальных условий. Но существует разделение этих методов на два больших класса, которое зависит только от того, какая модель многомерного шкалирования используется для анализа матрицы различий — метрическая или неметрическая.
+ -
+1
МНОГОМЕРНОЕ ШКАЛИРОВАНИЕ. Основные положения
В основе модели многомерного шкалирования лежит целый ряд предположений о структуре процессов различения объектов стимулов.
Физически каждый объект-стимул характеризуется множеством признаков, например, «объем», «форма», «пространственное положение», «высота», «длина» и т. п. Сами признаки могут быть простыми, одномерными и сложными, многомерными. Например, «высота» и «длина» — одномерные признаки, а «форма» и «положение» — многомерные. Отдельный одномерный признак может служить какой-либо одной размерностью более сложного признака. Так, «высота» геометрической фигуры есть одна из размерностей признака «форма». Каждый стимул имеет определенные значения или степень выраженности признака.
+ -
0
Модель шкалирования цветового зрения. Модель Терстона
Психофизическая идея Терстона заключалась в том, чтобы построить субъективную шкалу, основываясь только на структуре внутренних взаимоотношений между реакциями. Набор физических объектов может представлять собой просто шкалу наименований, поскольку стимульный параметр, соответствующий исследуемому субъективному признаку и по которому можно хотя бы упорядочить стимулы, априори неизвестен.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
0
Производные шкалы цветового зрения
Такие шкалы можно назвать «производными» шкалами интервалов или отношений, в отличие от первичных или прямых шкал, которые строятся методами Стивенса. Для первичной шкалы субъективные отношения между стимулами и числовые операции связаны друг с другом непосредственно процедурой эксперимента.
Производная шкала имеет методически более сложную структуру. Она требует дополнительной обработки первичных шкальных значений, и понятно, что дополнительная работа имеет смысл только в том случае, если «производная» шкала будет «сильнее» первичной. Это может быть основано на теоретических допущениях, что анализируемые оценки обладают дополнительными свойствами, кроме тех, которые установлены эмпирическими операциями в опыте, т. е. здесь предусматривается построение развитой модели шкалирования.
+ -
0
Психофизическая функция цветового зрения
При изложении нашего представления о психофизиологическом подходе к исследованию зрительной системы мы отмечали, что "феноменология зрения должна основываться на психофизических принципах описания и измерения психологических феноменов. Поэтому, прежде чем начинать изложение феноменологии цветового зрения, мы рассмотрим основные принципы психофизического анализа психических явлений.