Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+10


+ -
+6
Физическая и клиническая рефракция глаза


Глаз — сложная, постоянно изменяющаяся оптическая система, в объяснении работы которой не всегда применимы законы физической оптики. Глаз можно рассматривать как уникальное техническое устройство для передачи изображения. Создание картины зрительного восприятия — многокомпонентный процесс, важное звено в котором принадлежит ЦНС.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+6
Развитие зрения в дошкольном периоде
В данной статье мы рассмотрим следующие темы:
  • Особенности формирования рефракции глаз в раннем периоде детства
  • Развитие зрения и рефракции глаз в старшем дошкольном периоде
+ -
+5

Теория о том, что аномалии рефракции возникают в результате постоянной деформации глазного яблока, естественно наталкивает не только на вывод, что аномалии рефракции – постоянные состояния, но и что нормальная рефракция также является непрерывной. Поскольку эта теория принята практически во всем мире за факт, то неудивительно, что нормальный глаз обычно рассматривается как совершенная машина, всегда находящаяся в хорошем рабочем состоянии.

+ -
+2


Рефракция (физическая рефракция) — преломляющая сила оптической системы глаза, которая измеряется условной единицей — диоптрией. За одну диоптрию принята преломляющая сила стекла с главным фокусным расстоянием в 1 м. Диоптрия — величина, обратная главному фокусному расстоянию.

Средняя преломляющая сила нормального глаза может варьировать в пределах от 52,0 до 68,0 D.

В офтальмологии важна не рефракция оптической системы глаза, а ее способность фокусировать лучи на сетчатке. Поэтому используется понятие клиническая рефракция, т.е. положение заднего главного фокуса оптической системы глаза по отношению к сетчатке.
+ -
+2
Определение рефракции при помощи скиаскопии
Метод определения рефракции при помощи скиаскопии предложен в 1873 г. Кинье (Cuignct). Данный способ, благодаря своей доступности, точности и полной объективности, получил настолько широкое распространение, что в настоящее время скиаскопия является основным методом определения рефракции.
Основывается скиаскопия на следующем оптическом явлении: если зрачок осветить с помощью глазного зеркала так, как это делается при офталмоскопическом просвечивании сред, то он будет казаться равномерно красным; если же исследующий, продолжая наблюдение, начнет слегка вращать зеркало вокруг осп справа налево н наоборот, то яркость освещения зрачка будет меняться, как бы под влиянием пробегающей по дну глаза тени.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+1
Клиническая рефракция глаз | Спазм, аккомодации и близорукость
Оптическая установка и клиническая рефракция глаз. В настоящее время многие исследователи оспаривают основное положение о совпадении оптической установки (ОУ) глаз с полным расслаблением аккомодации.
У. X. Мусабейли и К. X. Адигезалова-Полчаева (1956), В. В. Волков и JI. Н. Колесникова (1973), А. И. Дашевский (1973), K?hl (1949) и другие считают необходимым изменить установившийся со времен Гельмгольца (1867) взгляд на покой аккомодации как на состояние полного расслабления цилиарной мышцы.
Авторы установили, что существует активная аккомодация не только для близкого расстояния, но и для дали. Является бесспорным антагонистический характер иннервации порций Мюллера и Брюкке в цилиарной мышце. Имеет значение и закон Геринга об одновременной и равной иннервации мышц обоих глаз (цит. по И. И. Меркулову, 1960).
Впервые реципрокный характер корковой иннервации мышц-антагонистов установил Н. Б. Введенский. А. И. Дашевский (1973) считает, что изменения антагонистических частей цилиарной мышцы также имеют реципрокный характер. То же можно сказать о сфинктере и дилататоре зрачка, наружных ад- и абдукторах глаз. Именно эта реципрокная зависимость внутри самой цилиарной мышцы и лежит в основе наших представлений об ОУ глаз.
ОУ глаз — это динамическое равновесие тонусов обеих частей аккомодационной мышцы. Обе части взаимосвязаны — при сокращении одной должна расслабляться другая.
+ -
+1
Методы определения дальнейшей точки ясного зрения
Дальнейшая точка ясного зрения характеризует ту или иную рефракцию, поэтому определить рефракцию у данного субъекта это значит узнать, где находится дальнейшая точка его ясного зрения. Мы располагаем для определения рефракции (или, что то же, дальнейшей точки ясного зрения) методами субъективными и объективными.
Субъективные методы.
Метод, основанный на показаниях остроты зрения. Определяют сначала visus больного без коррекции. Затем приставляют к испытуемому глазу сферические стекла (convex и concave) и спрашивают больного, улучшают они его visus или нет. Если стекла convex ухудшают зрение, a concave улучшают, то это говорит скорее за миопию. Если стекла convex улучшают зрение или во всяком случае не ухудшают его, a concave ухудшают зрение или не улучшают, то это дает право предполагать наличие гиперметропии. Наконец, при эмметропии стекла convex ухудшают зрение, a concave не улучшают.
Способ это неудобен тем, что дает много простора для симуляции и аггравации низкого зрения и, кроме того, неприменим в тех случаях, где понижение зрения не связано с рефракцией (атрофия зрительных нервов, глаукома и т. д. и т. п.).
2. Определение рефракции путем редуцирования дальнейшей точки ясного зрения. Проще всего было бы просто измерить расстояние дальнейшей точки ясного зрения от глаза. Если у пациента имеется миопия, при которой дальнейшая точка ясного зрения находится на близком расстоянии от глаза, то сделать это легко. При эмметропии же врачу, чтобы измерить это расстояние, пришлось бы удалиться на бесконечно далекое расстояние, а при гиперметропии еще дальше — по ту сторону бесконечности. Чтобы не ставить себя в такое „неловкое" положение, можно дальнейшую точку ясного зрения искусственно приблизить к глазу (редуцировать). Для этого 'мы приставляем к глазу пациента сильное двояковыпуклое стекло и определяем (измеряем) затем, на каком дальнейшем расстоянии от глаза он ясно различает с этим стеклом показываемый ему предмет. Переводя это на расстояние в диоптрии, мы из полученного числа диоптрий вычитаем силу того стекла, которое было приставлено к глазу, остаток и показывает его рефракцию. Например, со стеклом -4-4,0 D дальнейшая точка ясного зрения пациента находится в 25 см. от глаза, что соответствует миопии в 4,0 D. Для определения рефракции мы рассуждаем так: пациент стал миопомв +4,0D после того, как мы приставили к его глазу стекло в +4,0 D. Стало быть, его рефракция = 4,0 D— 4.0D — 0, т.е. наш пациент — эмметроп. Метод этот на практике не привился. Измерять расстояние и производить вычисления — дело довольно громоздкое. К тому же способ субъективен, все зависит от показаний больного.
+ -
0


Глаз человека представляет сложную оптическую систему. Аномалии этой системы широко распространены среди населения. В возрасте 20 лет около 31% всех людей являются дальнозоркими гиперметропами; около 29% - близорукими или миопами и лишь 40% людей имеют нормальную рефракцию.

Аномалии рефракции приводят к снижению остроты зрения и, таким образом, к ограничению в выборе профессии молодыми людьми. Прогрессирующая близорукость, является одной из самых частых причин слепоты во всем мире.
+ -
0

 

Теория о том, что аномалии рефракции обусловлены деформациями глазного яблока, естественным образом ведет к выводу, что они представляют собой неизменные состояния и что нормальная рефракция - это тоже некое постоянное состояние. Поскольку эта теория повсеместно рассматривается как истинная, то неудивительно обнаружить, что нормальный глаз считается совершенным механизмом, который всегда находится в хорошем рабочем состоянии. Независимо от того, знаком или незнаком человеку рассматриваемый объект, достаточно или недостаточно его освещение, приятна или неприятна окружающая обстановка и даже при наличии стресса или телесного заболевания считается, что нормальный глаз всегда должен иметь нормальную рефракцию и нормальное зрение. На самом деле факты не соответствуют такой точке зрения, и потому они удобно приписываются недостатку цилиарной мышцы или, если такое объяснение не подходит, вообще игнорируются.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
0

 

V. Рефракция

1. Определение понятия физической рефракции. Преломляющая способность линзы.

2. Величина физической рефракции преломляющих сред глаза новорожденного и взрослого. У новорожденного 77,0—80,0, у взрослого — 60,0 Д.

3. Две основные преломляющие среды глаза. Роговица, хрусталик.

4. Динамика изменения преломляющей силы оптической системы глаза. С возрастом уменьшается.

5. Величина преломляющей силы роговицы новорожденного и взрослого. У новорожденного до 60 Д, у взрослого до 40 Д.

6. Величина преломляющей силы хрусталика новорожденного и взрослого. У новорожденного до 30 Д, у взрослого около 20 Д.

7. Определение понятия клинической рефракции. Соотношение между оптической силой преломляющих сред и длиной оси глаза.

8. Виды клинической рефракции. Эмметропия, миопия, гиперметропия.

+ -
0
Офтальмоскопия в прямом и обратном виде
При исследовании этим способом представляется возможность непосредственного осмотра дна глаза, притом в прямом виде, т. с. так, как это есть: что находится вверху, мы и видим вверху и т. д.
Исследование это можно сравнить с рассматриванием предмета через увеличительное, стекло, стеклом при этом служат преломляющие среды глаза — роговина и хрусталик. Но осмотр дна глаза производится в особых условиях, через маленькое отверстие зрачка, так же, как если бы мы хотели заглянуть сквозь замочную скважину в закрытую комнату, которая, как известно, станет доступной для нашего обозрения лишь тогда, когда мы совсем близко приставим свои глаза. Точно так же и при прямом офталмоскопировании мы должны приблизить офталмоскоп и смотрящий через его отверстие свой глаз возможно ближе к исследуемому глазу.
Удастся ли теперь ясно видеть детали глазного дна или нет — будет зависеть от того, какие оптические условия представляют исследуемый и исследующий глаз.