Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
0
ПРИРОДА СВЕТА И ЦВЕТА. Исторический обзор
Зрение— основной источник информации о внешнем мире, данный человеку (и некоторым другим видам животных) его биологической природой. Для человека мир всегда представляет собой зрительную сцену, некоторую картину, формируемую из комбинаций световых пятен разной яркости и цвета.
Поэтому вопрос, что такое свет и почему мы видим мир цветным, наверное, один из самых интересных вопросов о природе психических явлений. Эту проблему пытались решать со времен античности, но долгое время решение ускользало от исследователей, поскольку психические явления рассматривались по прямой аналогии с физическими, т. е. закономерности психики искали в физических свойствах внешних воздействий.
+ -
0
Обыденные представления о цвете и свете
Представление о свете и цвете как физических свойствах материальных тел и излучений формируется у человека на основе многолетнего личного зрительного опыта. Житейское понятие о природе цвета и света отражается в обыденной речи, которая формируется под влиянием нашего жизненного опыта.
Мы говорим: «синее море», «красное яблоко», «зеленая трава», «желтый одуванчик», «белый телефонный аппарат», и т. п. То есть цвет определяется как свойство внешнего объекта, как физическая характеристика, аналогичная весу, плотности, материалу, из которого сделан объект. Совершенно также мы относимся и к световому излучению. Мы говорим: «яркий свет прожектора», «голубой свет луны», «тусклое мерцание звезд», «красный свет светофора», определяя свет и цвет как характеристики источника излучения.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
0
Развитие идеи о психофизиологической природе цвета
В самом начале XIX в. английский врач и естествоиспытатель Томас Янг (1773—1829), или Томас Юнг, как это уже стало привычно для нас произносить, известный своими открытиями в физике и лингвистике, продолжая эксперименты Ньютона по цветовому смешению, выявил, что в общем случае достаточно иметь всего три составляющие из спектра, чтобы получить с их помощью все остальные цвета, включая белый и пурпурный.
+ -
0
Трехстадийная концепция цветового зрения
Принципиальное значение для ответа на этот вопрос имеет одно из важнейших открытий нейрофизиологии XX в. — обнаружение в сенсорных системах у животных нейронов—детекторов. Первые исследования в этом направлении, проведенные на низших животных (лягушках) и высших животных (кошках), выявили, что в сетчатке у лягушки и в коре у кошки существуют клетки, селективно реагирующие либо на освещение (оn — клетки по Кафлеру или В — клетки по Юнгу), либо на затемнение (off — клетки по Кафлеру или D — клетки по Юнгу) локальных участков рецепторной поверхности сетчатки. Их назвали соответственно детекторами света и детекторами темноты.
+ -
0
«Сильные» (метрические) шкалы цветового зрения
Шкалы интервалов и отношений можно назвать «сильными» шкалами, поскольку по результатам таких измерений можно строить более точные психофизические функции, к ним можно применять более тонкий статистический аппарат по сравнению с двумя первыми типами шкал.
При построении психофизических функций это особенно существенно, поскольку физические шкалы в большинстве своем принадлежат именно к «сильным» типам (например, шкалы температур Цельсия и Фаренгейта — это интервальные шкалы, а шкалы длин и весов или температурная шкала Кельвина — шкалы отношений), хотя, конечно, широко применяется и «слабые» шкалы (например, порядковая шкала твердости минералов).
+ -
0
Производные шкалы цветового зрения
Такие шкалы можно назвать «производными» шкалами интервалов или отношений, в отличие от первичных или прямых шкал, которые строятся методами Стивенса. Для первичной шкалы субъективные отношения между стимулами и числовые операции связаны друг с другом непосредственно процедурой эксперимента.
Производная шкала имеет методически более сложную структуру. Она требует дополнительной обработки первичных шкальных значений, и понятно, что дополнительная работа имеет смысл только в том случае, если «производная» шкала будет «сильнее» первичной. Это может быть основано на теоретических допущениях, что анализируемые оценки обладают дополнительными свойствами, кроме тех, которые установлены эмпирическими операциями в опыте, т. е. здесь предусматривается построение развитой модели шкалирования.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
0
Модель шкалирования цветового зрения. Модель Терстона
Психофизическая идея Терстона заключалась в том, чтобы построить субъективную шкалу, основываясь только на структуре внутренних взаимоотношений между реакциями. Набор физических объектов может представлять собой просто шкалу наименований, поскольку стимульный параметр, соответствующий исследуемому субъективному признаку и по которому можно хотя бы упорядочить стимулы, априори неизвестен.
+ -
0
Цветовой стимул
Дистальный и проксимальный стимулы, вызывающие ощущение апертурного цвета, и есть собственно цветовые стимулы. Различие между дистальным и проксимальным стимулами определяется той средой, которая разделяет физическую сцену и рецепторную поверхность глаза. Если не считать воздуха, то основные изменения, которым подвергается дистальный стимул, вносят глазные среды: хрусталик, стекловидное тело, макулярный пигмент и т. д.
+ -
0
Взаимоотношение апертурных и предметных цветов
Разделение цветов на апертурные и предметные, исходя из общих характеристик ощущения и восприятия, позволяет, с одной стороны, выделить то общее, что свойственно и апертурным и предметным цветам, и показать, что только это и есть цветовая характеристика перцепта, а с другой стороны, дает возможность показать, что все остальные характеристики предметных цветов, которые обычно рассматриваются как цветовые, по существу, не имеют к цветовому зрению никакого отношения, а являются характеристиками совершенно других сенсорных качеств, таких, как фактура, форма, фон и др.
+ -
0
Хроматические характеристики цвета
Традиция психофизического изложения материала требует после описания абсолютной чувствительности рассматривать дифференциальную чувствительность сенсорной системы. Однако без предварительного описания отдельных составляющих цветового ощущения дифференциальную чувствительность рассматривать невозможно.
Даже при описании общей абсолютной чувствительности ахроматического и хроматического зрения нам пришлось упоминать насыщенность цвета, определение которой будет дано только теперь. Поэтому мы рассмотрим вначале все основные хроматические характеристики (или субъективные переменные) цвета, а затем перейдем к описанию дифференциальной чувствительности.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
0
Влияние яркости на хроматичность спектральных цветов
Рассмотренные в предыдущем разделе характеристики спектральных цветов были получены на одном и том же уровне либо фотометрической яркости, либо светлоты. Что произойдет с этими характеристиками при изменении уровня яркости в большую или меньшую сторону?
Влияние яркости на цветовой тон. Феномен Бецольда—Брюкке. Изменение яркости спектральных стимулов в значительной степени меняет цветовые тона излучений (рис. 2.4.6). При увеличении яркости крайние коротковолновые излучения (420—460 нм) из фиолетовых превращаются в синие, то же самое происходит с голубыми и сине-зелеными цветами спектра (480—495 нм), а зеленые и зелено-желтые цвета из средневолнового участка спектра (505—560 нм) превращаются в желтые.
+ -
0
Цветовые сходства и различия
Представим себе, что у нас имеются две установки Ньютона для смешивания цветов и мы их расположим так, чтобы цветовые лучи от них проецировались на соседние участки фовеальной области сетчатки. Наблюдатель будет видеть два цвета, расположенных рядом в поле зрения, а экспериментатор может изменять цвет каждого поля в отдельности.
Если мы предъявим испытуемому два монохроматических луча, например, с длиной волны 570 нм, то он увидит два одинаковых желтых цвета. Можно сказать, что такие два цвета имеют полное (максимальное) субъективное сходство и не имеют никакого субъективного различия, т. е. нулевого различия. Начнем добавлять к одному из желтых цветов монохроматический красный цвет.