Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+6
Общая трехстадийная модель цветового зрения
Результаты экспериментального исследования взаимосвязи между нейрональной сетью ахроматического зрения, представленной на рис. 4.3.3, и нейрональной сетью хроматического зрения, представленной на рис. 4.3.5, было проведено в работе Измайлова.
С этой целью методом многомерного шкалирования была построена пространственная модель различения монохроматических и ахроматических цветов разной яркости. В результате анализа оказалось, что множество цветов разной яркости можно расположить только в четырехмерном евклидовом пространстве, если исходить из условия линейных соотношений между цветовыми различиями и межточечными расстояниями.
+ -
+3


Различные феномены цветового зрения особенно ясно показывают, что зрительное восприятие зависит не только от вида стимулов и работы рецепторов, но также и от характера переработки сигналов в нервной системе.

Различные участки видимого спектра кажутся нам по-разному окрашенными, причем отмечается непрерывное изменение ощущений при переходе от фиолетового и синего через зеленый и желтый цвета - к красному.

Вместе с тем мы можем воспринимать цвета, отсутствующие в спектре, например, пурпурный тон, который получается при смешении красного и синего цветов.

Совершенно различные физические условия зрительной стимуляции могут приводить к идентичному восприятию цвета. Например, монохроматический желтый цвет невозможно отличить от определенной смеси чисто зеленого и чисто красного.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+2
Методы исследования зрительных функций
Производится в 2-х вариантах — для дали и для близи. Исследование остроты зрения вдаль производится с помощью таблицы Сивцева, которую для удобства работы в квартирных условиях целесообразно предварительно разрезать на две части (V = 0,1 — 0,4 и 0,5 — 1,0) и наклеить их на картонные листы.
+ -
+2

 

Наши глаза способны различать бесконечное разнообразие цветовых оттенков. Общеизвестно, что белый, или дневной свет, проходя через призму, разлагается на семь основных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Как ни удивительно, все семь цветов можно получить при смешении всего лишь трех красного, зеленого и синего (или фиолетового). Как же это получается?

Дело в том, что в сетчатке глаза, по предположению ученых, существует три элемента, которые воспринимают один из этих цветов. Цветовые лучи действуют на глаз, возбуждая с различной силой все три элемента, благодаря чему мы видим такое бесконечное разнообразие цветовых оттенков.

Проведите элементарный эксперимент, попробуйте смешать на бумаге краски — и вы получите множество оттенков основных цветов.

+ -
+2
Геометрическая модель смешения цветов
Результаты смешения спектральных цветов удобно описывать в геометрических терминах координатного пространства. Тогда например, можно сказать, что в пространстве смешения цветов спектральный ряд от 520 до 660 нм расположен на одной геодезической линии. Это пространство, очевидно, двумерно. Одним измерением служит цветовой тон, а другим — цветовая насыщенность. Такое пространство называется пространством хроматичности, или цветности.
+ -
+2
Особенности процессов кодирования цвета в престриарной зоне V4
В престриарной коре обезьяны выделяют зону V4, специфическим образом связанную с кодированием цвета (рис. 3.4.1). V4 получает основные афферентные входы от полей 18 и 19 и частично от поля 17. Из V4 сигналы поступают в нижневисочную кору. В V4 представлена только центральная часть поля зрения (20-30°). РП нейронов этой зоны имеют небольшой по размерам (15-20°), наличие которой можно выявить только по ее тормозному влиянию на реакцию центра.
За счет больших размеров периферии рецептивные поля нейронов V4 в среднем в 30 раз превышают по площади РП нейронов стриарной коры. Тормозное воздействие периферии РП максимально, если свойства проецируемого на нее стимула совпадают (или близки) со свойствами стимула, возбуждающего центр (размеры, спектральный состав и др.). В зоне V 4 отсутствует ретинотопическая проекция.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+1
Ощущение и восприятие цвета
Для психофизиологии цветового зрения основное содержание понятия «цвет» заключается в его сенсорных качествах, которые мы будем рассматривать в этом разделе. Представление о цвете как об ощущении, как о сенсорном образе можно получить, если в течение некоторого времени (например, 1—3 с) световое излучение наблюдать через апертуру — маленькое отверстие в большом непрозрачном экране, или как «гансфельд» — засветку всей сетчатки однородным излучением через матовую сферическую поверхность из стекла или пластмассы.
+ -
+1
Дифференциальная чувствительность к цветовым характеристикам
Дифференциальное цветоразличение. Дифференциальная цветовая чувствительность определяется через несколько наиболее характерных функций. Основной функцией цветоразличения считается зависимость ?? (?), которая представляет собой непрерывную кривую при аргументе, меняющемся от 400 до 700 нм. На рис. 5.1 приводится классический образец такой функции, полученной Райтом и Питтом. Она имеет три пика наибольшей
чувствительности в областях 440—450 нм, 480—500 нм и 580— 600 нм. Между этими областями внутри спектра чувствительность несколько уменьшается, но самое резкое понижение чувствительности происходит на краях спектра, где пороги увеличиваются в 10—20 раз.
+ -
+1
Цветовые рецептивные поля корковых клеток
В первичной и вторичных проекционных зонах зрительной коры обезьяны выделены 4 типа нейронов, общим свойством которых является реакция только на узкополосные спектральные стимулы, а не на широкополосные сигналы любой формы. Цветовые нейроны с концентрическими рецептивными полями обнаруживают двойную цветовую оппонентность: например, реагируют по типу R+G- в центре рецептивного поля и по типу R-G+
на периферии (или, наоборот R-G+ в центре, а R+G- — на периферии) (рис. 3.4.2). Выделяются два типа оппонентных клеток — R/G и B/Y, но преобладают клетки R/G-типа. Максимальная активация таких клеток, как и аналогичных нейронов с двойл ной цветовой оппонентностью в сетчатке и НКТ, достигается при одновременном засвете центра и периферии рецептивного поля разными излучениями. Нейроны этого типа получают прямые входы от НКТ и представляют первый этап обработки информации о цвете в коре. Клетки с концентрическими цветооппонептными рецептивными полями локализуются преимущественно в IV слое.
+ -
+1
Психофизиология цветового зрения | Модель Харвича и Джемсон
В историческом экскурсе в начале книги мы рассматривали причины отвержения одностадийной концепции и замены ее двухстадийной. И хотя первые идеи о втором звене цветового анализатора появились еще в начале нашего века, реально, в качестве сформировавшейся теории, двухстадийная концепция появляется только в 50-е годы. Первую математическую модель, основанную на широком круге экспериментальных измерений, предложили американские исследователи Харвич и Джемсон.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+1
Психофизиология цветового зрения | Достижения и недостатки одно- и двухстадийных теорий
Главным достижением XIX в. в исследовании цветового зрения явилась математическая модель смешения цветов, основанная на трехкомпонентной теории Юнга—Гельмгольца. Ее теоретическое значение состояло в установлении прямой связи между феноменами цветового смешения и тремя светочувствительными приемниками сетчатки, а практическое — в разработке системы спецификации цвета по спектральному составу излучения (Стандартный Наблюдатель МКО-31).
+ -
0
Как теория трехкомпонентности объясняет основные явления цветового зрения. Часть 4.
Случаи цветоаномалии (прот- и девтераномалии) с теоретической точки зрения можно объяснять как результаты частично измененной чувствительности того или иного из цветоощущающих аппаратов или сразу нескольких. Такая измененная чувствительность может выражаться либо в количественном изменении чувствительности цветоощущающего аппарата, либо в сдвиге или деформации соответствующей ему кривой основного цветового возбуждения. Следствием последнего являются неправильные, с точки зрения нормального глаза, цветовые уравнения.