+ -
0
Светоощущение, адаптация | Офтальмология
Светоощущение — способность зрительного анализатора воспринимать свет и различать его яркость. На светоощущении построены все другие возможности зрения.
Световая чувствительность неодинакова в различных отделах сетчатки, так как палочки и колбочки распределяются неравномерно. Палочки во много раз чувствительнее к свету, чем колбочки. На периферии сетчатки нейроэпителий представлен только палочками, поэтому светоощущение периферических отделов сетчатки значительно выше, чем центральных. Палочки сетчатки - носители сумеречного зрения, зрения при слабом освещении. Чувствительность глаза к свету определяет, в частности, концентрация светочувствительных зрительных веществ (зрительного пурпура) в палочках. На световую чувствительность глаза влияет и состояние нервных элементов зрительного аппарата, т.е. периферических и центральных нервных клеток и нервных волокон.
+ -
+5
Общая трехстадийная модель цветового зрения
Результаты экспериментального исследования взаимосвязи между нейрональной сетью ахроматического зрения, представленной на рис. 4.3.3, и нейрональной сетью хроматического зрения, представленной на рис. 4.3.5, было проведено в работе Измайлова.
С этой целью методом многомерного шкалирования была построена пространственная модель различения монохроматических и ахроматических цветов разной яркости. В результате анализа оказалось, что множество цветов разной яркости можно расположить только в четырехмерном евклидовом пространстве, если исходить из условия линейных соотношений между цветовыми различиями и межточечными расстояниями.
+ -
0
Психофизиология цветового зрения | Трехстадийная модель хроматического зрения
Результаты многомерного шкалирования больших цветовых различий между равнояркими стимулами, позволяют построить трехстадийную модель хроматического зрения. Блок-схема этой модели, взятая из работы Соколова и Измайлова, приведена на рис. 4.3.5. Как и в случае модели ахроматического зрения, входное звено этой нейронной сети, осуществляющей хроматический анализ световых излучений, представлено тремя типами рецепторов с максимумами чувствительности в коротковолновой, средневолновой и длинноволновой частях видимого спектра. Далее информация обрабатывается в системе двух оппонентных хроматических каналов (r—g и у—b) и одного неоппонентного ахроматического канала (Wh-bk).
+ -
0
Психофизиология цветового зрения | Трехстадийная модель ахроматического зрения
В работах Фомина и др., Соколова и Измайлова рассматривается трехстадийная модель ахроматического зрения, базирующаяся на принципе двухканального кодирования интенсивности в зрительной системе и разделении яркостной составляющей излучения от собственно ахроматической составляющей цвета.
Блок-схема' такой модели приведена на рис. 4.3.3. На первой стадии анализ интенсивности излучения осуществляется фотопическими рецепторами сетчатки. Принципы этой работы рецепторов изложены во многих руководствах по психофизике и физиологии зрения (см., например, Вышецки и Стайлс). Суммарный сигнал от трех типов рецепторов сетчатки (log L) передается в нейрональную сеть, которая содержит два реципрокно функционирующих канала — световой (В) и темновой (D). Эта двухканальная сеть представляет вторую стадию анализа интенсивности излучения.
+ -
0
Психофизиология цветового зрения | Модель Гуса
В последние несколько лет внимание исследователей привлекает модель, разрабатываемая Гусом и его сотрудниками. Она основывается на концепции Мюллера, которую иногда называют трехстадийной, поскольку оппонентные каналы в этой концепции подвергаются двухкратному преобразованию.
+ -
0
Психофизиология цветового зрения | Достижения и недостатки одно- и двухстадийных теорий
Главным достижением XIX в. в исследовании цветового зрения явилась математическая модель смешения цветов, основанная на трехкомпонентной теории Юнга—Гельмгольца. Ее теоретическое значение состояло в установлении прямой связи между феноменами цветового смешения и тремя светочувствительными приемниками сетчатки, а практическое — в разработке системы спецификации цвета по спектральному составу излучения (Стандартный Наблюдатель МКО-31).
+ -
0
Организация каналов из тонических неоппонентных клеток
Большое значение для понимания функциональной организации нейронной сети, анализирующей световое излучение, имеет классификация корковых нейронов, предложенная Юнгом и Баумгартнером. Они выделили пять типов нейронов в зрительной коре кошки, из которых один тип (А) не связан прямо с клетками НКТ и сетчатки, а, вероятно, представляет собой стабилизирующую систему, поддерживающую фоновый уровень возбуждения коры. Эти клетки отвечают при электрическом раздражении клеток таламуса или вестибулярного аппарата и не реагируют на раздражение рецепторных клеток диффузным светом.
+ -
0
Корреляция спектральных характеристик нейронов НКТ с феноменологией цвета
Реакции RG-, YB- и Wh/Bl-нейронов НКТ хорошо коррелируют с данными психофизических опытов. Де Валуа с соавторами протестировали цветоразличительные «способности» оппонентных и ахроматических клеток НКТ обезьяны методом замены равноярких цветовых стимулов.
Они обнаружили, что Wh/Bl-нейроны не реагируют на цветовые различия («путают» цвета, выравненные по яркости). Кривые спектральной чувствительности этих клеток совпадают по форме с фотопической кривой видности животного. Наименьшие пороги цветовых различий (М, нм) для вызова стандартной реакции имеют нейроны RG-типа в длинноволновой области спектра (570—620 нм), а YВ-нейроны — в длинно- и коротковолновой частях (480—500 нм и 580—620 нм) (рис. 3.3.2).
+ -
0
Психофизиология цветового зрения | Организация афферентных входов
Волокна зрительного нерва оканчиваются на клетках правого и левого наружного (латерального) коленчатого тела (НКТ). НКТ — это основной подкорковый центр зрительной системы, локализующийся в таламусе и осуществляющий пераработку информации, получаемой от сетчатки.
У рыб, амфибий, рептилий, птиц НКТ развито слабо. У насекомоядных и грызунов оно четко подразделяется на дорсальный и вентральный отделы, имеющие различный нейронный состав. Дорсальный отдел — основной для окончания зрительных волокон (аксонов ганглиозных клеток). Он имеет слоистое строение — 4 слоя у хищных, 6 слоев у приматов, у насекомоядных и грызуннов слоистость выражена плохо.
+ -
0
Реакции фоторецепторов на световое излучение
Суммарный ответ фоторецептора на поток квантов той или иной длины волны света складывается из элементарных дискретных гиперполяризационных реакций, каждая из которых имеет амплитуду 0,2 мВ и возникает на 1 фотон. Отдельный поглолценный фоторецептором квант света с вероятностью 0,7 вызывает фотоизомеризацию молекулы пигмента. В темноте дискретные реакции наблюдаются в наружном сегменте и в отсутствие светового сигнала, что связано со спонтанным (тепловым) распадом молекул фотопигмента.
+ -
0
Неевклидовость ахроматического пространства
Основной ахроматической составляющей апертурного цвета; является светлота. Диапазон ее изменения от ослепительно яркого цвета до очень темного вмещает в себя значительно больше дифференциальных порогов (~300 е.з.р.), чем диапазон изменений цветового тона (=150 е. з. р., включая пурпурные) или насыщенности (от 10 до 30 е. з.р.). Основываясь на характеристиках дифференциальной чувствительности (рис. 2.5.7), Фехнер вывел психофизическую функцию светлоты в виде
Шкалирование надпороговых значений стимулов, которое применил Стивене, а вслед за ним и другие исследователи (Экман и др.), дало результаты, представляющие не логарифмическую, а степенную функцию:
+ -
0
Неевклидовость ахроматического пространства
Основной ахроматической составляющей апертурного цвета; является светлота. Диапазон ее изменения от ослепительно яркого цвета до очень темного вмещает в себя значительно больше дифференциальных порогов (~300 е.з.р.), чем диапазон изменений цветового тона (=150 е. з. р., включая пурпурные) или насыщенности (от 10 до 30 е. з.р.). Основываясь на характеристиках дифференциальной чувствительности (рис. 2.5.7), Фехнер вывел психофизическую функцию светлоты в виде
Шкалирование надпороговых значений стимулов, которое применил Стивене, а вслед за ним и другие исследователи (Экман и др.), дало результаты, представляющие не логарифмическую, а степенную функцию: