В настоящее время выделено два параллельных пути обработки зрительной информации: сетчатка — таламус — кора и сетчатка— переднее двухолмие — кора. Цветовой анализ излучения осуществляется последовательно нейронными структурами сетчатки, таламуса (наружное коленчатое тело) и коры больших полушарий головного мозга. Относительный вклад каждой из этих структур определяется уровнем развития животного. Наиболее близкими к человеку—анатомически и филогенетически — являются обезьяны, цветовое зрение которых, как показано в обширных поведенческих исследованиях Де Валуа, в основных своих проявлениях совпадает с цветовым зрением человека. Поэтому при рассмотрении нейронных механизмов цветового зрения акцент будет сделан — там, где это возможно, — на данных, полученных в опытах на обезьянах.
Кванты света поглощаются в рецепторах специализированны ми молекулами — зрительными фотопигментами. Зрительные пигменты были открыты независимо друг от друга немецкими физиологами Ф. Боллем и В. Кюне в 1877—1879 гг. Ф. Болль заметил, что выделенная из зрительного бокала лягушки сетчатка поначалу выглядит красной, а затем, выцветая на свету, становится желтой и, наконец, совсем бесцветной.
Фотоизомеризация и мембранный потенциал. Проблема «посредника». Реакцией фоторецептора позвоночных на свет является гиперполяризация, возникающая в результате уменьшения проницаемости плазматической мембраны наружного сегмента для ионов Nа+.
До настоящего времени не выяснен механизм, посредством которого фотоиндуцированные превращения зрительного пигмента приводят к изменению натриевой проводимости (механизм «трансдукции»). Предполагается, что трансдукция осуществляется с помощью внутриклеточного химического посредника.
До настоящего времени не выяснен механизм, посредством которого фотоиндуцированные превращения зрительного пигмента приводят к изменению натриевой проводимости (механизм «трансдукции»). Предполагается, что трансдукция осуществляется с помощью внутриклеточного химического посредника.
Морфология. Горизонтальные клетки располагаются в сетчатке сразу за фоторецепторами в дистальных отделах внутреннего ядерного слоя. Размеры сомы этих клеток варьируют в пределах 50 ч-200 мкм. Часть клеток имеет аксоны, которые у большинства позвоночных контактируют с рецепторами и лишь у рыб (карп, карась) оканчиваются в проксимальной области внутреннего ядерного слоя.
Биполяры оn- и оff-типов. Биполярные клетки связывают рецепторные входы сетчатки с ее выходными элементами — ганглиозными клетками. Через биполяры каждая ганглиозная клетка соединена со многими тысячами фоторецепторов и каждый рецептор — с несколькими ганглиозными клетками.
При всем многообразии морфологических типов физиологически выделяют два основных типа этих клеток: деполяризационные (оff-клетки) и гиперполяризационные (оff-клетки). Оff-биполяры реагируют деполяризацией на освещение центра рецептивного поля пятном света с диаметром 100-200 мкм (это примерно соответствует области ветвления дендритов биполярной клетки), а оff-биполяры на тот же стимул реагируют гиперполяризацией.
При всем многообразии морфологических типов физиологически выделяют два основных типа этих клеток: деполяризационные (оff-клетки) и гиперполяризационные (оff-клетки). Оff-биполяры реагируют деполяризацией на освещение центра рецептивного поля пятном света с диаметром 100-200 мкм (это примерно соответствует области ветвления дендритов биполярной клетки), а оff-биполяры на тот же стимул реагируют гиперполяризацией.
Амакриновые клетки получают входные сигналы от биполяров и других амакриновых клеток и посылают сигналы к ганглиозным клеткам или к другим биполярам.
Разнообразие их морфологических типов в сетчатке позвоночных зависит от вида животного: в сетчатке черепахи описано 27 разновидностей, в сетчатке кошки — 22, приматов — 6. Действует, как и в случае с биполярами, правило, по которому чем шире в сетчатке данного животного внутренний плексиформный слой и чем больше в нем подслоев, тем больше разновидностей амакриновых и биполярных клеток.
Разнообразие их морфологических типов в сетчатке позвоночных зависит от вида животного: в сетчатке черепахи описано 27 разновидностей, в сетчатке кошки — 22, приматов — 6. Действует, как и в случае с биполярами, правило, по которому чем шире в сетчатке данного животного внутренний плексиформный слой и чем больше в нем подслоев, тем больше разновидностей амакриновых и биполярных клеток.
Анализ излучения в сетчатке завершается в слое ганглиозных клеток, реакции которых, состоящие из последовательностей импульсов, передаются в подкорковые зрительные центры — верхнее двухолмие и наружное коленчатое тело.
Морфологические типы ганглиозных клеток. В течение последних десятилетий проведено большое число исследований морфологии ганглиозных клеток сетчатки у животных разного уровня эволюционного развития. Данные этих исследований представляют интерес в связи с интенсивным развитием в современных нейронауках структурно-функционального подхода, основанного на выявлении закономерных связей между морфологией и функцией нейронных образований мозга.
Морфологические типы ганглиозных клеток. В течение последних десятилетий проведено большое число исследований морфологии ганглиозных клеток сетчатки у животных разного уровня эволюционного развития. Данные этих исследований представляют интерес в связи с интенсивным развитием в современных нейронауках структурно-функционального подхода, основанного на выявлении закономерных связей между морфологией и функцией нейронных образований мозга.
Суммарный ответ фоторецептора на поток квантов той или иной длины волны света складывается из элементарных дискретных гиперполяризационных реакций, каждая из которых имеет амплитуду 0,2 мВ и возникает на 1 фотон. Отдельный поглолценный фоторецептором квант света с вероятностью 0,7 вызывает фотоизомеризацию молекулы пигмента. В темноте дискретные реакции наблюдаются в наружном сегменте и в отсутствие светового сигнала, что связано со спонтанным (тепловым) распадом молекул фотопигмента.