Мюллеровские клетки. Электроретинограмма

Важным элементом сетчатки являются мюллеровские клетки нейроглии, пронизывающие ее по поперечнику. Особенностью нейроглии является то, что, не участвуя непосредственно в передаче зрительной информации, она обеспечивает нормальную жизнедеятельность и функционирование нейронов.
Ганглиозные клетки

Анализ излучения в сетчатке завершается в слое ганглиозных клеток, реакции которых, состоящие из последовательностей импульсов, передаются в подкорковые зрительные центры — верхнее двухолмие и наружное коленчатое тело.
Морфологические типы ганглиозных клеток. В течение последних десятилетий проведено большое число исследований морфологии ганглиозных клеток сетчатки у животных разного уровня эволюционного развития. Данные этих исследований представляют интерес в связи с интенсивным развитием в современных нейронауках структурно-функционального подхода, основанного на выявлении закономерных связей между морфологией и функцией нейронных образований мозга.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
Амакриновые клетки

Амакриновые клетки получают входные сигналы от биполяров и других амакриновых клеток и посылают сигналы к ганглиозным клеткам или к другим биполярам.
Разнообразие их морфологических типов в сетчатке позвоночных зависит от вида животного: в сетчатке черепахи описано 27 разновидностей, в сетчатке кошки — 22, приматов — 6. Действует, как и в случае с биполярами, правило, по которому чем шире в сетчатке данного животного внутренний плексиформный слой и чем больше в нем подслоев, тем больше разновидностей амакриновых и биполярных клеток.
Биполярные клетки

Биполяры оn- и оff-типов. Биполярные клетки связывают рецепторные входы сетчатки с ее выходными элементами — ганглиозными клетками. Через биполяры каждая ганглиозная клетка соединена со многими тысячами фоторецепторов и каждый рецептор — с несколькими ганглиозными клетками.
При всем многообразии морфологических типов физиологически выделяют два основных типа этих клеток: деполяризационные (оff-клетки) и гиперполяризационные (оff-клетки). Оff-биполяры реагируют деполяризацией на освещение центра рецептивного поля пятном света с диаметром 100-200 мкм (это примерно соответствует области ветвления дендритов биполярной клетки), а оff-биполяры на тот же стимул реагируют гиперполяризацией.
АНАЛИЗ СПЕКТРАЛЬНОГО СОСТАВА ИЗЛУЧЕНИЙ НЕЙРОНАМИ СЕТЧАТКИ | Горизонтальные клетки

Морфология. Горизонтальные клетки располагаются в сетчатке сразу за фоторецепторами в дистальных отделах внутреннего ядерного слоя. Размеры сомы этих клеток варьируют в пределах 50 ч-200 мкм. Часть клеток имеет аксоны, которые у большинства позвоночных контактируют с рецепторами и лишь у рыб (карп, карась) оканчиваются в проксимальной области внутреннего ядерного слоя.
Реакции фоторецепторов на световое излучение

Суммарный ответ фоторецептора на поток квантов той или иной длины волны света складывается из элементарных дискретных гиперполяризационных реакций, каждая из которых имеет амплитуду 0,2 мВ и возникает на 1 фотон. Отдельный поглолценный фоторецептором квант света с вероятностью 0,7 вызывает фотоизомеризацию молекулы пигмента. В темноте дискретные реакции наблюдаются в наружном сегменте и в отсутствие светового сигнала, что связано со спонтанным (тепловым) распадом молекул фотопигмента.
Электрофизиология фоторецепторов

Фотоизомеризация и мембранный потенциал. Проблема «посредника». Реакцией фоторецептора позвоночных на свет является гиперполяризация, возникающая в результате уменьшения проницаемости плазматической мембраны наружного сегмента для ионов Nа+.
До настоящего времени не выяснен механизм, посредством которого фотоиндуцированные превращения зрительного пигмента приводят к изменению натриевой проводимости (механизм «трансдукции»). Предполагается, что трансдукция осуществляется с помощью внутриклеточного химического посредника.
Зрительные фотопигменты

Кванты света поглощаются в рецепторах специализированны ми молекулами — зрительными фотопигментами. Зрительные пигменты были открыты независимо друг от друга немецкими физиологами Ф. Боллем и В. Кюне в 1877—1879 гг. Ф. Болль заметил, что выделенная из зрительного бокала лягушки сетчатка поначалу выглядит красной, а затем, выцветая на свету, становится желтой и, наконец, совсем бесцветной.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
Морфология рецепторов сетчатки

В настоящее время выделено два параллельных пути обработки зрительной информации: сетчатка — таламус — кора и сетчатка— переднее двухолмие — кора. Цветовой анализ излучения осуществляется последовательно нейронными структурами сетчатки, таламуса (наружное коленчатое тело) и коры больших полушарий головного мозга. Относительный вклад каждой из этих структур определяется уровнем развития животного. Наиболее близкими к человеку—анатомически и филогенетически — являются обезьяны, цветовое зрение которых, как показано в обширных поведенческих исследованиях Де Валуа, в основных своих проявлениях совпадает с цветовым зрением человека. Поэтому при рассмотрении нейронных механизмов цветового зрения акцент будет сделан — там, где это возможно, — на данных, полученных в опытах на обезьянах.

Опрос

Оцените работу движка

Другие опросы...