Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+6
Общая трехстадийная модель цветового зрения
Результаты экспериментального исследования взаимосвязи между нейрональной сетью ахроматического зрения, представленной на рис. 4.3.3, и нейрональной сетью хроматического зрения, представленной на рис. 4.3.5, было проведено в работе Измайлова.
С этой целью методом многомерного шкалирования была построена пространственная модель различения монохроматических и ахроматических цветов разной яркости. В результате анализа оказалось, что множество цветов разной яркости можно расположить только в четырехмерном евклидовом пространстве, если исходить из условия линейных соотношений между цветовыми различиями и межточечными расстояниями.
+ -
+3


Различные феномены цветового зрения особенно ясно показывают, что зрительное восприятие зависит не только от вида стимулов и работы рецепторов, но также и от характера переработки сигналов в нервной системе.

Различные участки видимого спектра кажутся нам по-разному окрашенными, причем отмечается непрерывное изменение ощущений при переходе от фиолетового и синего через зеленый и желтый цвета - к красному.

Вместе с тем мы можем воспринимать цвета, отсутствующие в спектре, например, пурпурный тон, который получается при смешении красного и синего цветов.

Совершенно различные физические условия зрительной стимуляции могут приводить к идентичному восприятию цвета. Например, монохроматический желтый цвет невозможно отличить от определенной смеси чисто зеленого и чисто красного.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+2


Человек имеет цветовое зрение благодаря тому, что в его глазу содержа гея колбочки трех разных видов, каждый из которых чувствителен к свету с определенной длиной волны. Содержащийся в них фотопигмент-вещество, реагирующее на свет определенной частоты и меняющее электрическую возбудимость клетки, - различен для всех трех видов.
+ -
+2
Геометрическая модель смешения цветов
Результаты смешения спектральных цветов удобно описывать в геометрических терминах координатного пространства. Тогда например, можно сказать, что в пространстве смешения цветов спектральный ряд от 520 до 660 нм расположен на одной геодезической линии. Это пространство, очевидно, двумерно. Одним измерением служит цветовой тон, а другим — цветовая насыщенность. Такое пространство называется пространством хроматичности, или цветности.
+ -
+2
Особенности процессов кодирования цвета в престриарной зоне V4
В престриарной коре обезьяны выделяют зону V4, специфическим образом связанную с кодированием цвета (рис. 3.4.1). V4 получает основные афферентные входы от полей 18 и 19 и частично от поля 17. Из V4 сигналы поступают в нижневисочную кору. В V4 представлена только центральная часть поля зрения (20-30°). РП нейронов этой зоны имеют небольшой по размерам (15-20°), наличие которой можно выявить только по ее тормозному влиянию на реакцию центра.
За счет больших размеров периферии рецептивные поля нейронов V4 в среднем в 30 раз превышают по площади РП нейронов стриарной коры. Тормозное воздействие периферии РП максимально, если свойства проецируемого на нее стимула совпадают (или близки) со свойствами стимула, возбуждающего центр (размеры, спектральный состав и др.). В зоне V 4 отсутствует ретинотопическая проекция.
+ -
+1

Цветовое зрение. Кравков С.В. 

Цель настоящего очерка осветить природу цветового зрения как одного из важнейших средств познания окружающего мира.

Автор стремился выяснить значение, которое имеет вопрос о цветовом зрении исходя из теории отражения.

Кроме того, автору хотелось показать, что наиболее вероятное и самое простое решение вопроса о нервном аппарате, дающем возможность адекватно отображать цветовые свойства вещей, было высказано впервые Ломоносовым.

Дельнейший прогресс науки о цветовом зрении представляет собой в сущности уточнение и развитие его идей - идей трёхкомпонентности цветового зрения.

Излагая современное состояние этой теории, автор, естественно, старался подытожить данные своих работ и работ своих сотрудников по изучению цветового зрения методом непрямых раздражений.

Работы эти дают новый материал, иллюстрирующий идеи И. П. Павлова о неразрывной связи зрительного анализатора с организмом как целым и вместе с тем конкретизируют применительно к цветовому зрению идеи ионной теории возбуждения, развивавшиеся П. П. Лазаревым.

Рассмотрение проблемы цветового зрения в настоящем очерке отнюдь не исчерпывающее. Это хорошо сознает автор.

Более сложные вопросы психологии восприятия цветов, тесно связанные с общими вопросами психологии восприятия и мышления, в этой книге не затрагиваются.

Здесь дан лишь анализ более простых закономерностей, лежащих в основе цветовых ощущений.

Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+1
Понятие света и цвета в физике
Термины «свет» и «цвет» очень широко используются в различных разделах физики, где они обозначают некоторые виды электромагнитного излучения. Термином «свет» в современной физике чаще всего обозначают электромагнитное излучение в диапазоне от 400 до 700 нм (т. е. видимую часть спектра излучений), но нередко термин «свет» используется и для обозначения других участков спектра, невидимых глазом. Например: «Оптика — это раздел физики, занимающийся изучением природы света, законов его распространения и взаимодействия с веществом....
+ -
+1
Ощущение и восприятие цвета
Для психофизиологии цветового зрения основное содержание понятия «цвет» заключается в его сенсорных качествах, которые мы будем рассматривать в этом разделе. Представление о цвете как об ощущении, как о сенсорном образе можно получить, если в течение некоторого времени (например, 1—3 с) световое излучение наблюдать через апертуру — маленькое отверстие в большом непрозрачном экране, или как «гансфельд» — засветку всей сетчатки однородным излучением через матовую сферическую поверхность из стекла или пластмассы.
+ -
+1
Дифференциальная чувствительность к цветовым характеристикам
Дифференциальное цветоразличение. Дифференциальная цветовая чувствительность определяется через несколько наиболее характерных функций. Основной функцией цветоразличения считается зависимость ?? (?), которая представляет собой непрерывную кривую при аргументе, меняющемся от 400 до 700 нм. На рис. 5.1 приводится классический образец такой функции, полученной Райтом и Питтом. Она имеет три пика наибольшей
чувствительности в областях 440—450 нм, 480—500 нм и 580— 600 нм. Между этими областями внутри спектра чувствительность несколько уменьшается, но самое резкое понижение чувствительности происходит на краях спектра, где пороги увеличиваются в 10—20 раз.
+ -
+1
Цветовые рецептивные поля корковых клеток
В первичной и вторичных проекционных зонах зрительной коры обезьяны выделены 4 типа нейронов, общим свойством которых является реакция только на узкополосные спектральные стимулы, а не на широкополосные сигналы любой формы. Цветовые нейроны с концентрическими рецептивными полями обнаруживают двойную цветовую оппонентность: например, реагируют по типу R+G- в центре рецептивного поля и по типу R-G+
на периферии (или, наоборот R-G+ в центре, а R+G- — на периферии) (рис. 3.4.2). Выделяются два типа оппонентных клеток — R/G и B/Y, но преобладают клетки R/G-типа. Максимальная активация таких клеток, как и аналогичных нейронов с двойл ной цветовой оппонентностью в сетчатке и НКТ, достигается при одновременном засвете центра и периферии рецептивного поля разными излучениями. Нейроны этого типа получают прямые входы от НКТ и представляют первый этап обработки информации о цвете в коре. Клетки с концентрическими цветооппонептными рецептивными полями локализуются преимущественно в IV слое.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+1
Психофизиология цветового зрения | Модель Харвича и Джемсон
В историческом экскурсе в начале книги мы рассматривали причины отвержения одностадийной концепции и замены ее двухстадийной. И хотя первые идеи о втором звене цветового анализатора появились еще в начале нашего века, реально, в качестве сформировавшейся теории, двухстадийная концепция появляется только в 50-е годы. Первую математическую модель, основанную на широком круге экспериментальных измерений, предложили американские исследователи Харвич и Джемсон.
+ -
+1
Психофизиология цветового зрения | Достижения и недостатки одно- и двухстадийных теорий
Главным достижением XIX в. в исследовании цветового зрения явилась математическая модель смешения цветов, основанная на трехкомпонентной теории Юнга—Гельмгольца. Ее теоретическое значение состояло в установлении прямой связи между феноменами цветового смешения и тремя светочувствительными приемниками сетчатки, а практическое — в разработке системы спецификации цвета по спектральному составу излучения (Стандартный Наблюдатель МКО-31).