Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+6
Общая трехстадийная модель цветового зрения
Результаты экспериментального исследования взаимосвязи между нейрональной сетью ахроматического зрения, представленной на рис. 4.3.3, и нейрональной сетью хроматического зрения, представленной на рис. 4.3.5, было проведено в работе Измайлова.
С этой целью методом многомерного шкалирования была построена пространственная модель различения монохроматических и ахроматических цветов разной яркости. В результате анализа оказалось, что множество цветов разной яркости можно расположить только в четырехмерном евклидовом пространстве, если исходить из условия линейных соотношений между цветовыми различиями и межточечными расстояниями.
+ -
+3
Атлас глазных болезней | Патология роговой оболочки и склеры (ЧАСТЬ 4)
131. Узелковая дистрофия роговой оболочки. Структура узелков, видимая при биомикроскопии роговицы.
132. Узелковая дистрофия роговой оболочки (а, б).
133. Смешанная форма дистрофии роговой оболочки (а-в).
134. Пятнистая дистрофия роговой оболочки (а-г).
135. Решетчатая дистрофия роговой оболочки (а, б).
136. Семейная узелковая дистрофия роговицы. Изменения переднего эпителия, передней пограничной пластинки и отложение аморфного вещества под ними,
а - окраска по Ван-Гизону х 120;
б - окраска толуидиновым синим X 120;
в - импрегнация по Гомори х 350.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+2
Особенности процессов кодирования цвета в престриарной зоне V4
В престриарной коре обезьяны выделяют зону V4, специфическим образом связанную с кодированием цвета (рис. 3.4.1). V4 получает основные афферентные входы от полей 18 и 19 и частично от поля 17. Из V4 сигналы поступают в нижневисочную кору. В V4 представлена только центральная часть поля зрения (20-30°). РП нейронов этой зоны имеют небольшой по размерам (15-20°), наличие которой можно выявить только по ее тормозному влиянию на реакцию центра.
За счет больших размеров периферии рецептивные поля нейронов V4 в среднем в 30 раз превышают по площади РП нейронов стриарной коры. Тормозное воздействие периферии РП максимально, если свойства проецируемого на нее стимула совпадают (или близки) со свойствами стимула, возбуждающего центр (размеры, спектральный состав и др.). В зоне V 4 отсутствует ретинотопическая проекция.
+ -
+2
Атлас глазных болезней | Патология хрусталика и стекловидного тела
Заболевания стекловидного тела и особенно хрусталика встречаются сравнительно часто и составляют около 12% всей глазной патологии.
В связи с тем, что эти структуры глаза не имеют сосудов, главным проявлением патологии является нарушение прозрачности их. Почти любая патология сосудистой оболочки и цилиарного тела может вести к помутнению хрусталика и стекловидного тела, что само по себе вызывает снижение зрительных функций глаза. Вторичные помутнения данных структур возникают и в связи с травмами глазного яблока. При этом, как и в связи с увеитами нетравматического происхождения, наблюдается разрастание в стекловидном теле соединительной ткани и некоторых других тканей глазного яблока. В связи с нарушениями питания хрусталика при подобного рода процессах, в частности с распространением шварт и пленок на поверхность его, могут возникать субкапсулярные катаракты. Следует подчеркнуть, что при образовании своеобразной волокнистой ткани субкапсулярной катаракты метапластического превращения эпителия хрусталика в фибробласты не происходит. В норме он образует коллаген капсулы хрусталика, а при субкапсулярной катаракте г волокнистые структуры.
+ -
+1
Цветовые рецептивные поля корковых клеток
В первичной и вторичных проекционных зонах зрительной коры обезьяны выделены 4 типа нейронов, общим свойством которых является реакция только на узкополосные спектральные стимулы, а не на широкополосные сигналы любой формы. Цветовые нейроны с концентрическими рецептивными полями обнаруживают двойную цветовую оппонентность: например, реагируют по типу R+G- в центре рецептивного поля и по типу R-G+
на периферии (или, наоборот R-G+ в центре, а R+G- — на периферии) (рис. 3.4.2). Выделяются два типа оппонентных клеток — R/G и B/Y, но преобладают клетки R/G-типа. Максимальная активация таких клеток, как и аналогичных нейронов с двойл ной цветовой оппонентностью в сетчатке и НКТ, достигается при одновременном засвете центра и периферии рецептивного поля разными излучениями. Нейроны этого типа получают прямые входы от НКТ и представляют первый этап обработки информации о цвете в коре. Клетки с концентрическими цветооппонептными рецептивными полями локализуются преимущественно в IV слое.
+ -
+1
Психофизиология цветового зрения | Модель Харвича и Джемсон
В историческом экскурсе в начале книги мы рассматривали причины отвержения одностадийной концепции и замены ее двухстадийной. И хотя первые идеи о втором звене цветового анализатора появились еще в начале нашего века, реально, в качестве сформировавшейся теории, двухстадийная концепция появляется только в 50-е годы. Первую математическую модель, основанную на широком круге экспериментальных измерений, предложили американские исследователи Харвич и Джемсон.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
+1
Психофизиология цветового зрения | Достижения и недостатки одно- и двухстадийных теорий
Главным достижением XIX в. в исследовании цветового зрения явилась математическая модель смешения цветов, основанная на трехкомпонентной теории Юнга—Гельмгольца. Ее теоретическое значение состояло в установлении прямой связи между феноменами цветового смешения и тремя светочувствительными приемниками сетчатки, а практическое — в разработке системы спецификации цвета по спектральному составу излучения (Стандартный Наблюдатель МКО-31).
+ -
+1
Атлас глазных болезней | Патология век и соединительной оболочки глаза
Своеобразие клинического течения заболеваний век обусловлено их анатомическим строением. Патологические процессы в области века бывают очаговыми и тотальными. Наиболее часто встречаются воспалительные заболевания век (абсцесс, ячмень, халазион, рожистое воспаление век и др.).
При воспалительных заболеваниях век наблюдаются отек и покраснение кожи различной степени и интенсивности, повышение местной температуры, болезненность при пальпации, флюктуация и др. Отечность век развивается не только при заболевании их, но может возникать при воспалительных и опухолевых процессах в орбите, а также при некоторых общих заболеваниях организма.
+ -
0
Психофизиология цветового зрения | Организация афферентных входов
Волокна зрительного нерва оканчиваются на клетках правого и левого наружного (латерального) коленчатого тела (НКТ). НКТ — это основной подкорковый центр зрительной системы, локализующийся в таламусе и осуществляющий пераработку информации, получаемой от сетчатки.
У рыб, амфибий, рептилий, птиц НКТ развито слабо. У насекомоядных и грызунов оно четко подразделяется на дорсальный и вентральный отделы, имеющие различный нейронный состав. Дорсальный отдел — основной для окончания зрительных волокон (аксонов ганглиозных клеток). Он имеет слоистое строение — 4 слоя у хищных, 6 слоев у приматов, у насекомоядных и грызуннов слоистость выражена плохо.
+ -
0
Спектрально-оппонентные и ахроматические нейроны
По реакциям на белый свет нейроны НКТ, как и ганглиозные клетки сетчатки, делятся на нейроны on-, off- и on-off-типов, на фазические и тонические. По реакциям на спектральные стимулы нейроны НКТ делят на спектрально-оппонентные и ахроматические. Наиболее подробно свойства этих клеток изучены в лабораториях известных американских ученых Хьюбела и Визеля и Де Валуа (1975) на НКТ обезьяны.
Видеть Без Очков. Уникальная методика восстановления зрения от Школы Здоровья
+ -
0
Особенности нейронов парво- и магноцеллюлярных слоев
По современным данным, нейроны НКТ, участвующие в кодировании цвета, локализуются в парвоцеллюлярных слоях. Здесь сконцентрированы тонические клетки RG- и YВ-типов, для которых характерна линейная суммация колбочковых сигналов по площади рецептивного поля. Нелинейность возникает, как и у оппонентных ганглиозных клеток сетчатки, лишь в специальных условиях адаптации.
Среди нейронов этих слоев выделяют две большие группы: широкополосные №6-клетки (от англ. «widp band») и узкополосные Wb-клетки (от англ. «narrow band»). Wb-клетки избирательно возбуждаются в узком диапазоне длин волн, как правило из коротко- или длинноволновой части спектра, и тормозятся на остальные.
+ -
0
Корреляция спектральных характеристик нейронов НКТ с феноменологией цвета
Реакции RG-, YB- и Wh/Bl-нейронов НКТ хорошо коррелируют с данными психофизических опытов. Де Валуа с соавторами протестировали цветоразличительные «способности» оппонентных и ахроматических клеток НКТ обезьяны методом замены равноярких цветовых стимулов.
Они обнаружили, что Wh/Bl-нейроны не реагируют на цветовые различия («путают» цвета, выравненные по яркости). Кривые спектральной чувствительности этих клеток совпадают по форме с фотопической кривой видности животного. Наименьшие пороги цветовых различий (М, нм) для вызова стандартной реакции имеют нейроны RG-типа в длинноволновой области спектра (570—620 нм), а YВ-нейроны — в длинно- и коротковолновой частях (480—500 нм и 580—620 нм) (рис. 3.3.2).